• Title/Summary/Keyword: Color Histogram

Search Result 500, Processing Time 0.035 seconds

Hardware Implementation of Moving Picture Retrieval System Using Scene Change Technique (장면 전환 기법을 이용한 동영상 검색 시스템의 하드웨어 구현)

  • Kim, Jang-Hui;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.30-36
    • /
    • 2008
  • The multimedia that is characterized by multi-media, multi-features, multi-representations, huge volume, and varieties, is rapidly spreading out due to the increasing of application domains. Thus, it is urgently needed to develop a multimedia information system that can retrieve the needed information rapidly and accurately from the huge amount of multimedia data. For the content-based retrieval of moving picture, picture information is generally used. It is generally used when video is segmented. Through that, it can be a structural video browsing. The tasking that divides video to shot is called video segmentation, and detecting the cut for video segmentation is called cut detection. The goal of this paper is to divide moving picture using HMMD(Hue-Mar-Min-Diff) color model and edge histogram descriptor among the MPEG-7 visual descriptors. HMMD color model is more familiar to human's perception than the other color spaces. Finally, the proposed retrieval system is implemented as hardware.

Distance Measuring Method for Motion Capture Animation (모션캡쳐 애니메이션을 위한 거리 측정방법)

  • Lee, Heei-Man;Seo, Jeong-Man;Jung, Suun-Key
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.129-138
    • /
    • 2002
  • In this paper, a distance measuring algorithm for motion capture using color stereo camera is proposed. The color markers attached on articulations of an actor are captured by stereo color video cameras, and color region which has the same color of the marker's color in the captured images is separated from the other colors by finding dominant wavelength of colors. Color data in RGB (red, green, blue) color space is converted into CIE (Commission Internationale del'Eclairage) color space for the purpose of calculating wavelength. The dominant wavelength is selected from histogram of the neighbor wavelengths. The motion of the character in the cyber space is controlled by a program using the distance information of the moving markers.

Extraction of an Effective Saliency Map for Stereoscopic Images using Texture Information and Color Contrast (색상 대비와 텍스처 정보를 이용한 효과적인 스테레오 영상 중요도 맵 추출)

  • Kim, Seong-Hyun;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1008-1018
    • /
    • 2015
  • In this paper, we propose a method that constructs a saliency map in which important regions are accurately specified and the colors of the regions are less influenced by the similar surrounding colors. Our method utilizes LBP(Local Binary Pattern) histogram information to compare and analyze texture information of surrounding regions in order to reduce the effect of color information. We extract the saliency of stereoscopic images by integrating a 2D saliency map with depth information of stereoscopic images. We then measure the distance between two different sizes of the LBP histograms that are generated from pixels. The distance we measure is texture difference between the surrounding regions. We then assign a saliency value according to the distance in LBP histogram. To evaluate our experimental results, we measure the F-measure compared to ground-truth by thresholding a saliency map at 0.8. The average F-Measure is 0.65 and our experimental results show improved performance in comparison with existing other saliency map extraction methods.

Modification-robust contents based motion picture searching method (변형에 강인한 내용기반 동영상 검색방법)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.215-217
    • /
    • 2008
  • The most widely used method for searching contents of mot ion picture compares contents by extracted cuts. The cut extract ion methods, such as CHD(Color Histogram Difference) or ECR(Edge Change Ratio), are very weak at modifications such as cropping, resizing and low bit rate. The suggested method uses audio contents for indexing and searching to make search be robust against these modification. Scenes of audio contents are extracted for modification-robust search. And based on these scenes, make spectral powers binary on each frequency bin. in the time-frequency domain. The suggested method shows failure rate less than 1% on the false positive error and the true negative error to the modified(using cropping, clipping, row bit rate, addtive frame) contents.

  • PDF

Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적)

  • Lee, Seong Min;Seong, Il;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

A Detection of Smoking in Elevator (엘리베이터 내의 흡연 추출)

  • Shin, Seong-Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.89-94
    • /
    • 2012
  • In fact, smoking is prohibited in elevators. It is morally wrong to smoke in elevators. In addition, smoking can be very fatal for our children and for women. In this paper, forensic evidence is submitted to court by people who smoke in elevators. Shots around the face of the person in the elevator extracted partially by scene change detection. Smokers is extracted that the white bar is at the mouth biter. People spouting smoke extraction will proceed in the future. It is extracted by using technology of color histogram, one of the scene change detection method. The extract is a much more accurate extraction ratio than the methods that do not use scene change detection.

Pedestrian Detection Algorithm using a Gabor Filter Bank (Gabor Filter Bank를 이용한 보행자 검출 알고리즘)

  • Lee, Sewon;Jang, Jin-Won;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.930-935
    • /
    • 2014
  • A Gabor filter is a linear filter used for edge detectionas frequency and orientation representations of Gabor filters are similar to those of the human visual system. In this thesis, we propose a pedestrian detection algorithm using a Gabor filter bank. In order to extract the features of the pedestrian, we use various image processing algorithms and data structure algorithms. First, color image segmentation is performed to consider the information of the RGB color space. Second, histogram equalization is performed to enhance the brightness of the input images. Third, convolution is performed between a Gabor filter bank and the enhanced images. Fourth, statistical values are calculated by using the integral image (summed area table) method. The calculated statistical values are used for the feature matrix of the pedestrian area. To evaluate the proposed algorithm, the INRIA pedestrian database and SVM (Support Vector Machine) are used, and we compare the proposed algorithm and the HOG (Histogram of Oriented Gradient) pedestrian detector, presentlyreferred to as the methodology of pedestrian detection algorithm. The experimental results show that the proposed algorithm is more accurate compared to the HOG pedestrian detector.

A Flame-Detection System Robust to Lighting and Environments (조명과 환경 변화에 강건한 화염 검출 시스템)

  • Park, Jang-Sik;Kim, Hyun-Tae;Park, Soo-Chang;Son, Kyung-Sik
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.68-75
    • /
    • 2008
  • In this paper, we introduce a fire-detection system which is robust to light sources and environment changing. We can decide the threshold values that classify the regions between a fire flame and light sources by analyzing them in RGB color space. But we could not discriminate quasi-flame region from fire flame region with the value. The difference of mean-histogram technique make it possible to extract flame region more efficient because fire flame is continuously changing after it occurs. In order to validate real fire, this paper uses regional compactness in the end of process. Computer simulation show that proposed method make more robust to light sources and environment changing.

Content-based Image Retrieval System (내용기반 영상검색 시스템)

  • Yoo, Hun-Woo;Jang, Dong-Sik;Jung, She-Hwan;Park, Jin-Hyung;Song, Kwang-Seop
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.363-375
    • /
    • 2000
  • In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.

  • PDF

Content based Image Retrieval System by Shape Global Feature and Histogram (형태 전역특징과 히스토그램을 이용한 내용 기반 영상 검색 시스템)

  • 황병곤;정성호;이상열
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.9-16
    • /
    • 2002
  • Content based Image retrieval methods in the multimedia information retrievals use primary visual features such as color, texture and shape. Color and texture generally are used as features of the image retrieval systems. But these systems may produce errors in similar image retrieval because two images with different shapes can represent very different contents. Therefore, the use of shape describing features is essential in an efficient content based image retrieval system. In this paper, after the global features filtering process by the boundary of objects, we have created a better shape similarity image retrieval system by a histogram of shape information.

  • PDF