• Title/Summary/Keyword: Colloidal Particles

Search Result 277, Processing Time 0.025 seconds

Effect of Colloidal Silica on Electredeposited Film from Copper sulfate Bath (황산구리 전해욕의 전착피막에 미치는 콜로이달실리카의 영향)

  • Lee, Sang-Baek;Kim, Byeong-Il;Yun, Jeong-Mo;Park, Jeong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.413-418
    • /
    • 2001
  • We investigated change of crystal structure, surface morphology and crystal orientation of the electrodeposited film from dispersed $SiO_2$ suspensions (colloidal silica) copper sulfate bath and arse corrosion potentials and physical specific properties. As addition of colloidal silica in copper electrolytic hath, the crystal Particles on filial was fined-down, made uniform and account of particles were increased. Hardness of copper electrodeposited film ascended about 15% and (111), (200) and (311) plane of X-ray diffraction patterns were almost swept away, so preferred orientation chanced from (111) to (110) plane. Also, corrosion potential of electrodeposited copper film was noble with colloidal silica addition.

  • PDF

Synthesis of scheelite-type nanocolloidal particles by pulsed laser ablation in liquid and their size distribution analysis

  • Lee, Jung-Il;Shim, Kwang Bo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • A novel pulsed laser ablation process in liquid was investigated to prepare scheelite-type ceramic [calcium tungstate ($CaWO_4$) and calcium molybdate ($CaMoO_4$)] nanocolloidal particles. The crystalline phase, particle morphology, particle size distribution, absorbance and optical band-gap were investigated. Stable colloidal suspensions consisting of well-dispersed $CaWO_4$ and $CaMoO_4$ nanoparticles with narrow size distribution could be obtained without any surfactant. Particle tracking analysis using optical microscope combined with image analysis was applied for a fast determination of particle size distribution in the prepared nanocolloidal suspensions. The mean nanoparticle size of $CaWO_4$ and $CaMoO_4$ colloidal nanoparticles were 16 nm and 30 nm, with the standard deviations of 2.1 and 5.2 nm, respectively. The optical absorption edges showed blue-shifted values about 60~70 nm than those of reported in bulk crystals. And also, the estimated optical energy band-gaps of $CaWO_4$ and $CaMoO_4$ colloidal particles were 5.2 and 4.7 eV. The observed band-gap widening and blue-shift of the optical absorbance could be ascribed to the quantum confinement effect due to the very small size of the $CaWO_4$ and $CaMoO_4$ nanocolloidal particles prepared by pulsed laser ablation in liquid.

Computer simulation of agglomeration in colloidal alumina powder suspension (콜로이드성 알루미나 분말 입자의 응집현상의 컴퓨터 시뮬레이션)

  • 김종철;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.224-230
    • /
    • 1999
  • Agglomeration of colloidal alumina particles in a suspension is simulated. Particles in a suspension have potential energies between them and move to decrease the summation of all the potential energies between particles. The effects of various types of potential curves on particle agglomeration were checked. Strong short range attractive energy without repulsive energy barrier makes small strong clusters with disordered network structure but weak short-range force with big repulsive energy barrier makes big agglomerates with a close packing structure. As particles are agglomerated the potential energy with strong repulsive energy barrier between agglomerates gradually decreases the importance of the repulsive energy barrier and induces a different type of agglomeration behavior.

  • PDF

Effects of the Counter Ion Valency on the Colloidal Interaction between Two Cylindrical Particles

  • Lee, In-Ho;Dong, Hyun-Bae;Choi, Ju-Young;Lee, Sang-Yup
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.567-572
    • /
    • 2009
  • In this study, the effects of counter ion valency of the electrolyte on the colloidal repulsion between two parallel cylindrical particles were investigated. Electrostatic interactions of the cylindrical particles were calculated with the variation of counter ion valency. To calculate the electrical repulsive energy working between these two cylindrical particles, Derjaguin approximation was applied. The electrostatic potential profiles were obtained numerically by solving nonlinear Poission-Boltzmann (P-B) equation and calculating middle point potential and repulsive energy working between interacting surfaces. The electrical potential and repulsive energy were influenced by counter ion valency, Debye length, and surface potential. The potential profile and middle point potential decayed with the counter ion valency due to the promoted shielding of electrical charge. On the while, the repulsive energy increased with the counter ion valency at a short separation distance. These behaviors of electrostatic interaction agreed with previous results on planar or spherical surfaces.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Correlation of the Green Microstructure of ZrO2 with the Colloid/Interface Variables (Zirconia성형체의 미세구조와 콜로이드/계면변수와의 상관관계에 대한 분석)

  • 장현명;한규호;이기강;정한남
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.91-101
    • /
    • 1990
  • The green microstructure and sintering behavior of ZrO2 were analyzed in terms of kinetic stability (measured by the stability ratio ; W) and interfacial characteristics of colloidal suspension. Green density and the most frequent pore radius(MFPR) of green body were directly correlated with the stability ratio. These observations were explained using a concept of the critical stability ratio(Wc) and the potential energy of two interacting particles in colloidal suspension. Analysis of the data also indicates that the potential energy barrier between two interacting colloid particles should be higher than its critical value for a fabrication of ZrO2 green body with dense and uniform microstructure. Besides, we have successfully applied a concept of the donoracceptor interaction to increase the kinetic stability of ZrO2 slip and density of green body.

  • PDF

Collodial Properties and Acid Consuming Capacity of Hydrous Aluminum Oxide Suspension (제산제 알루미나수화물의 콜로이드성과 제산능)

  • 이계주;이기명
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 1991
  • Rheological, colloidal and micromeritical properties were followed to investigate aging mechanisms of hydrous aluminum oxide suspension using Zeta-meter systems, BET adsorption apparatus, Master sizer and electronmicroscope. The results indicate that hydrous aluminum oxide suspension revealed plastic flow with thixotropy. The viscosity, thixotropy and yield value were increased with increasing concentration. During aging process, the viscosity and thixotropic index were increased by an addition of glycerin, however, sorbitol stabilized aging process of the suspension being accompanied with growth of particle size and reduction in specific surface area, pore area and pore volume, and consistency. Diminution of adsorptive power of the particles was also protected by addition of sorbitol to hydrous aluminum oxide suspension. From these results, one of aging mechanism of hydrous aluminum oxide suspension assumed growth and/or crystallization of colloidal particles in aqueous suspension.

  • PDF

Fluorescence and Laser Light Scattering Studies of Modified Poly(ethylene-co-methylacrylate0 Ionomers on the Formation of Stable Colloidal Nanoparticles in Aqueous Solution

  • 여상인;우규환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1054-1059
    • /
    • 1998
  • Fluorescence and dynamic light scattering measurements were applied to the study of formation and structure of aggregated colloidal particles in modified poly(ethylene-co-methylacrylate) ionomers in aqueous solution. Both 8-anillino-l-naphthalene-sulfonic acid (ANS) and pyrene were used as fluorescence probe to obtain the information on the structure of particle surface and inside, respectively. Three different ionomers used in this study started to aggregate at very dilute concentration, 3-8 x 10-6 g/mL. In this study, we demonstrate that the polyethylene ionomers can form stable nanoparticles. The hydrophobic core made of the polyethylene backbone chains is stabilized by the ionic groups on the particle surface. Such a formed stable nanoparticles have a relatively narrow size distribution with an average radius in the range of 27-48 nm, depending on the kind of ionic groups. Once the stable particles are formed, the particle size distributions were nearly constant. This study shows another way to prepare surfactant-free polyethylene nanoparticles.

Migration in concentrated suspension of spherical particles dispersed in polymer solution

  • Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2001
  • In this symposium paper, the migration and hydrodynamic diffusion of non-colloidal, spherical particles suspended in polymer solutions are considered under Poiseuille or torsional flows. The migration phenomena in polymer solutions are compared with those in Newtonian fluids and the effect of fluid elasticity is discussed. The experimental results on particle migration in dilute polymer solution reveal that even a slight change in the rheological property of the dispersing medium can induce drastic differences in flow behavior and migration of particles, especially in dilute and semi-concentrated suspensions.

  • PDF

Preparation of Silylated Waterborne Polyurethane/Silica Nanocomposites Using Colloidal Silica (Colloidal Silica를 이용한 Silylated Waterborne Polyurethane/Silica Nanocomposite의 제조)

  • Hong, Min Gi;Shin, Yong Tak;Choi, Jin Joo;Lee, Won Ki;Lee, Gyoung Bae;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.561-567
    • /
    • 2010
  • Silylated waterborne polyurethane was synthesized by capping the NCO groups of polyurethane prepolymer, prepared from isophrone diisocyanate, poly(tetramethylene glycol) and dimethylol propionic acid, with aminopropyl triethoxysilane. Subsequently, it was mixed with colloidal silica to prepare silylated waterborne polyurethane/silica nanocomposites. The average sizes of nanocomposite particles, measured by dynamic light scattering, showed almost the same value, irrespective of increasing silica content. However, the prepared nanocomposites showed better thermal stability than pure waterborne polyurethane.