DOI QR코드

DOI QR Code

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang (Nano Functional Materials Research Group, Department of Powder Materials, Korea Institute of Materials Science (KIMS)) ;
  • Moon, Jun-Hyuk (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Young-Kuk (Nano Functional Materials Research Group, Department of Powder Materials, Korea Institute of Materials Science (KIMS)) ;
  • Choi, Chul-Jin (Nano Functional Materials Research Group, Department of Powder Materials, Korea Institute of Materials Science (KIMS))
  • Received : 2011.05.09
  • Accepted : 2011.07.14
  • Published : 2011.08.28

Abstract

Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Keywords

References

  1. J. H. Moon, Y.-S. Cho and S.-M. Yang: Bull. Korean Chem. Soc., 30 (2009) 2245. https://doi.org/10.5012/bkcs.2009.30.10.2245
  2. Y.-S. Cho, J. H. Moon, G.-R. Yi and S.-M. Yang: J. Disperse Sci. Tech., 31 (2010) 368. https://doi.org/10.1080/01932690903196201
  3. B. Gates and Y. Xia: Adv. Mater., 13 (2003) 1605.
  4. Y.-S. Cho, G.-R. Yi, J. H. Moon, D.-C. Kim, B.-J. Lee and S.-M. Yang: Langmuir, 21 (2005) 10770. https://doi.org/10.1021/la051558t
  5. Y.-S. Cho, G.-R. Yi, J. H. Moon, D.-C. Kim, B.-J. Lee and S.-M. Yang: J. Colloid Interf. Sci., 341 (2010) 209. https://doi.org/10.1016/j.jcis.2009.09.060
  6. F. Iskandar, A. B. D. Nandiyanto, K. M. Yun, C. J. Hogan, K. Okuyama and P. Biswas: Adv. Mater., 19 (2007) 1408. https://doi.org/10.1002/adma.200601822
  7. P. D. Garcia, R. Sapienza, A. Blanco and C. Lopez: Adv. Mater., 19 (2007) 2597. https://doi.org/10.1002/adma.200602426
  8. S. Kuai, S. Badilescu, G. Bader, R. Bruning, X. Hu and V.-V. Truong: Adv. Mater., 15 (2003) 73. https://doi.org/10.1002/adma.200390015
  9. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage and J. Aizenberg: PNAS, 107 (2010) 10354. https://doi.org/10.1073/pnas.1000954107
  10. E. Yablonovitch: Phys. Rev. Lett., 58 (1987) 2059. https://doi.org/10.1103/PhysRevLett.58.2059
  11. G. Subramanian, V. N. Manoharan, J. D. Thorne, and D. J. Pine: Adv. Mater., 11 (1999) 1261. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1261::AID-ADMA1261>3.0.CO;2-A
  12. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson and D. C. Hanna: Phys. Rev. Lett., 84(19) (2000) 4345. https://doi.org/10.1103/PhysRevLett.84.4345
  13. Y.-S. Cho, G.-R. Yi, J.-J. Hong, S. H. Jang and S.-M. Yang: Thin Solid Films, 515 (2006) 1864. https://doi.org/10.1016/j.tsf.2006.07.022
  14. Y.-S. Cho, H.-M. Kim, J.-J. Hong, G.-R. Yi, S. H. Jang and S.-M. Yang: Colloid Surf. A, 336 (2009) 88. https://doi.org/10.1016/j.colsurfa.2008.11.014
  15. G.-R. Yi, J. H. Moon and S.-M. Yang: Chem. Mater., 13 (2001) 2613. https://doi.org/10.1021/cm0102584
  16. J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin: Phys. Rev. Lett., 83 (1999) 300. https://doi.org/10.1103/PhysRevLett.83.300
  17. S. Hirano and K. Kato: J. Non-cryst. Solids, 100 (1988) 538. https://doi.org/10.1016/0022-3093(88)90079-8
  18. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides and G. D. Stucky: Science, 282 (1998) 2244. https://doi.org/10.1126/science.282.5397.2244
  19. L. H. Wang, D. R. Yuan, X. L. Duan, X. Q. Wang and F. P. Yu: Cryst. Res. Technol., 42 (2007) 321. https://doi.org/10.1002/crat.200610822
  20. L. Yang, Ph D Thesis, Novel nanostructured electrodes, Department of Chemistry, University of Wollongong, Wollongong (2007) 94.
  21. P. D. Garcia, R. Sapienza and C. Lopez: Adv. Mater., 22 (2010) 12. https://doi.org/10.1002/adma.200900827

Cited by

  1. Fabrication Of Colloidal Clusters Decorated With Dye Molecules For Potential Application As Photonic Molecules vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0102