DOI QR코드

DOI QR Code

Effects of the Counter Ion Valency on the Colloidal Interaction between Two Cylindrical Particles

  • Lee, In-Ho (Department of Chemical and Biomolecular Engineering,Specialized Graduate School of Hydrogen & Fuel Cell, Yonsei University) ;
  • Dong, Hyun-Bae (Department of Chemical and Biomolecular Engineering,Specialized Graduate School of Hydrogen & Fuel Cell, Yonsei University) ;
  • Choi, Ju-Young (Department of Chemical and Biomolecular Engineering) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering)
  • Published : 2009.03.20

Abstract

In this study, the effects of counter ion valency of the electrolyte on the colloidal repulsion between two parallel cylindrical particles were investigated. Electrostatic interactions of the cylindrical particles were calculated with the variation of counter ion valency. To calculate the electrical repulsive energy working between these two cylindrical particles, Derjaguin approximation was applied. The electrostatic potential profiles were obtained numerically by solving nonlinear Poission-Boltzmann (P-B) equation and calculating middle point potential and repulsive energy working between interacting surfaces. The electrical potential and repulsive energy were influenced by counter ion valency, Debye length, and surface potential. The potential profile and middle point potential decayed with the counter ion valency due to the promoted shielding of electrical charge. On the while, the repulsive energy increased with the counter ion valency at a short separation distance. These behaviors of electrostatic interaction agreed with previous results on planar or spherical surfaces.

Keywords

References

  1. Caruso, F. Colloids and Colloid Assemblies; Wiely-VCH: Weinheim, German, 2003; p 150
  2. Niemeyer, C. M. Angew. Chem. Int. Ed. 2001, 40, 4129
  3. van der Zande, B. M. I.; Bohmer, M. R.; Fokkink, L. G. J.; Schonenberger, C. Langmuir 2000, 16, 451 https://doi.org/10.1021/la9900425
  4. Dong, H.; Han, H.; Lee, S.-Y. J. Cryst. Growth 2008, 310, 1268 https://doi.org/10.1016/j.jcrysgro.2008.01.008
  5. Moon, J. H.; Kim, A. J.; Crocker, J. C.; Yang, S. Adv. Mater. 2007, 19, 2508 https://doi.org/10.1002/adma.200700543
  6. Moon, J.-M.; Wei, A. J. Phys. Chem. B 2005, 109, 23336 https://doi.org/10.1021/jp054405n
  7. Daly, B.; Arnold, D. C.; Kulkarni, J. S.; kazakova, O.; Shaw, M. T.; Nikitenko, S.; Erts, D.; Morris, M. A.; Holmes, J. D. Small 2006, 2, 1299 https://doi.org/10.1002/smll.200600167
  8. Lee, S.-Y.; Culver, J. N.; Harris, M. T. J. Coll. Interface Sci. 2006, 297, 554 https://doi.org/10.1016/j.jcis.2005.11.039
  9. Hunter, R. J. Foundations of Colloid Science; Oxford: New York, U.S.A., 1989; p 332
  10. Bowen, W. R.; Sharif, A. O. J. Colloid Interface Sci. 1997, 187, 363 https://doi.org/10.1006/jcis.1996.4705
  11. Sharif, A. O.; Tabatabaian, Z.; Bowen, W. R. J. Colloid Interface Sci. 2002, 255, 138 https://doi.org/10.1006/jcis.2002.8637
  12. Halle, B. J. Chem. Phys. 1995, 102, 7338
  13. Choi, J.; Dong, H.; Haam, S.; Lee, S.-Y. Bull. Korean Chem. Soc. 2008, 29, 1131 https://doi.org/10.5012/bkcs.2008.29.6.1131
  14. Brenner, S. L.; McQuarrie, D. A. Biophys. J. 1973, 13, 301 https://doi.org/10.1016/S0006-3495(73)85987-9
  15. Harries, D. Langmuir 1998, 14, 3149 https://doi.org/10.1021/la971314b
  16. Ospeck, M.; Fraden, S. J. Chem. Phys. 1998, 109, 9166 https://doi.org/10.1063/1.477469
  17. Tracy, C. A.; Widom, H. Physica A 1997, 244, 402 https://doi.org/10.1016/S0378-4371(97)00229-X
  18. Brenner, S. L.; McQuarrie, D. A. J. Colloid Interface Sci. 1973, 44, 298 https://doi.org/10.1016/0021-9797(73)90222-1
  19. James, E. A.; Williams, D. J. A. J. Colloid Interface Sci. 1985, 107, 44 https://doi.org/10.1016/0021-9797(85)90147-X
  20. Bowen, W. R.; Sharif, A. O. Nature 1998, 398, 663 https://doi.org/10.1038/19418
  21. Chapot, D.; Bocquet, L.; Trizac, E. J. Colloid Interface Sci. 2005, 285, 609 https://doi.org/10.1016/j.jcis.2004.11.059
  22. Chapot, D.; Bocquet, L.; Trizac, E. J. Chem. Phys. 2005, 120, 3969 https://doi.org/10.1063/1.1642617
  23. Andrietti, F.; Peres, A.; Pezzotta, R. Biophys. J. 1976, 16, 1121 https://doi.org/10.1016/S0006-3495(76)85761-X
  24. Hiemenz, P. C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry; Marcel Dekker: New York, U.S.A., 1997; p 502
  25. Deggelmann, M.; Graf, C.; Hagenbüchle, M.; Hoss, U.; Johner, C.; Kramer, H.; Martin, C.; Weber, R. J. Phys. Chem. 1994, 98, 364 https://doi.org/10.1021/j100052a058
  26. Israelachvili, J. Intermolecular & Surface Forces; Academic Press: London, U.K., 1991; p 161
  27. Pack, G. R.; Wong, L.; Lamm, G. Biopolymers 1999, 49, 575 https://doi.org/10.1002/(SICI)1097-0282(199906)49:7<575::AID-BIP4>3.0.CO;2-J
  28. Gu. Y. J. Colloid Interface Sci. 2000, 231, 199 https://doi.org/10.1006/jcis.2000.7110
  29. Hsu, J.-P.; Yu, H.-Y.; Tseng, S. J. Phys. Chem. B 2006, 110, 25007 https://doi.org/10.1021/jp062704m
  30. Watanabe, A.; Sakamori, W. Colloid Polym. Sci. 1977, 255, 782 https://doi.org/10.1007/BF01664448

Cited by

  1. Helix – Rod transition in a nanospring vol.350, pp.1, 2009, https://doi.org/10.1016/j.jcis.2010.06.005