• 제목/요약/키워드: Collision simulation

검색결과 1,118건 처리시간 0.029초

선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보) (Numerical Simulation of Structural Response in Bow Collision (1st Report))

  • 박명규
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

틸트로터 무인기의 충돌회피기동 모사 (Collision Avoidance Maneuver Simulation of Tilt Rotor Unmanned Aerial Vehicle)

  • 황수정;이명규;오수훈
    • 한국항공운항학회지
    • /
    • 제15권3호
    • /
    • pp.33-45
    • /
    • 2007
  • The collision avoidance maneuver flight simulation for tilt rotor unmanned aerial vehicle was performed by time-accurate numerical integration method based on wind tunnel test data. Five representative collision avoidance maneuvers were simulated under constraints of aerodynamic stall, propulsion power, structural load, and control actuator capability. The collision avoidance performances of the maneuvers were compared by the computed collision avoidance times. The sensitivities of initial flight speed and collision zone shape on the collision avoidance time were investigated. From these results, it was found that the moderate pull-up turn maneuver defined using moderate pitch and maximum roll controls within simulation constraints is the most robust and efficient collision avoidance maneuver under the various flight speeds and collision object shapes in the tilt rotor UAV applications.

  • PDF

Automatic collision avoidance algorithm based on improved artificial potential field method

  • Wang Zongkai;Im Namkyu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.265-266
    • /
    • 2023
  • With the development of science and technology, various research on ship collision avoidance has also developed rapidly. The research and development of ship collision avoidance technology has also received high attention from many researchers. This paper proposes a new collision avoidance algorithm for ships based on the artificial force field collision avoidance method. Using the simulation platform, the simulation results show that ships can successfully avoid collision in open water under single ship and multi ship situations, and the research results are relatively ideal.

  • PDF

선수부 설계시 구조거동과 충돌격벽에 미치는 영향 (Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Design)

  • 신영식;박명규
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.219-231
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effects of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

Simulation of Deformable Objects using GLSL 4.3

  • Sung, Nak-Jun;Hong, Min;Lee, Seung-Hyun;Choi, Yoo-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.4120-4132
    • /
    • 2017
  • In this research, we implement a deformable object simulation system using OpenGL's shader language, GLSL4.3. Deformable object simulation is implemented by using volumetric mass-spring system suitable for real-time simulation among the methods of deformable object simulation. The compute shader in GLSL 4.3 which helps to access the GPU resources, is used to parallelize the operations of existing deformable object simulation systems. The proposed system is implemented using a compute shader for parallel processing and it includes a bounding box-based collision detection solution. In general, the collision detection is one of severe computing bottlenecks in simulation of multiple deformable objects. In order to validate an efficiency of the system, we performed the experiments using the 3D volumetric objects. We compared the performance of multiple deformable object simulations between CPU and GPU to analyze the effectiveness of parallel processing using GLSL. Moreover, we measured the computation time of bounding box-based collision detection to show that collision detection can be processed in real-time. The experiments using 3D volumetric models with 10K faces showed the GPU-based parallel simulation improves performance by 98% over the CPU-based simulation, and the overall steps including collision detection and rendering could be processed in real-time frame rate of 218.11 FPS.

주변 유체를 고려한 선박 충돌해석 기법 연구 (Ship Collision Analysis Technique considering Surrounding Water)

  • 이상갑;이정대
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

차간거리 경보시스템의 HiLS 구현 (An Experimental Investigation of a Collision Warning System for Automobiles using Hardware-in-the-Loop Simulations)

  • 송철기;김성하;이경수
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.222-227
    • /
    • 1998
  • Collision warning systems have been an active research and development area as the interests and demands for ASV's (Advanced Safety Vehicles) have increased. This paper presents an experimental investigation of a collision warning system for automobiles. A collision warning HiLS(Hardware-in-the-Loop Simulation) system has been designed and used to test the collision warning algorithm, radar sensors, and warning displays under realistic operating conditions in the laboratory. the collision warning algorithm is operated by a warning index, which is a function of the warning distance and the braking distance. The computer calculates velocities of the preceding vehicle and following vehicle, relative distance and relative velocity of the vehicles using vehicle simulation models. The relative distance and the relative velocity are applied to the vehicle simulator controlled by a DC motor.

  • PDF

추출가능 상황에서 전자기기 사용유형에 따른 상대적 위험성평가: 운전 시뮬레이션 연구 (Relative Risk Evaluation of Front-to-Rear-End Collision when Drivers Using Electronic Devices: A Simulation Study)

  • 이세원;이재식
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.104-110
    • /
    • 2009
  • In this driving simulation study, the impairing effects of various types of electronic devices usage(i. e., destination search by using in-vehicle navigation system, TV watching and dialing cellular phone) during driving on front-to-rear-end collision avoidance were investigated. Percentage of collisions, driving speeds when the drivers collided, and initial reaction time for collision avoidance were analyzed and compared as the dependent measures. The results indicated that (1) any types of electronic devices usage during driving induced more serious collision-related impairment than control condition where no additional task was required, and (2) in general, destination search task appeared to impair drivers collision avoidance performance more than the other task requirements in terms of percentage of collisions and initial reaction time for collision avoidance, but TV watching induced most serious collision impact. These results suggested that any types of electronic device usage could distract drivers attention from the primary task of driving, and be resulted in serious outcome in potentially risky situation of front-to-rear-end collision. In particular, mandatory use of eye-hand coordination and receiving feedback seemed to one of essential factor leading the drivers visual attentional distraction.

컴퓨터 시뮬레이션(PC-CRASH)을 이용한 터널 내 피추돌 차량의 충돌 속도 추정에 관한 연구 (A study on the estimation of impact velocity of crashed vehicles in tunnel using computer simulation(PC-CRASH))

  • 한창평;최홍주
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.40-45
    • /
    • 2020
  • In a vehicle-to-vehicle accident, the impact posture, braking status, final stopping position, collision point and collision speed are important factors for accident reconstruction. In particular, the speed of collision is the most important issue. In this study, the collision speed and the final stopping position in the tunnel were estimated using PC-CRASH, a vehicle crash analysis program used for traffic accident analysis, and the final stopping position of the simulation and the final stopping position of the traffic accident report were compared. When the Pride speed was 0km/h or 30km/h and the Sorento speed was 100m/h, the simulation results and reports matched the final stopping positions and posture of the two vehicles. As a result of the simulation, it can be estimated that Pride was collided in an almost stationary state.

선수 충돌시 구조거동과 충돌격벽에 미치는 영향 (Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Collision)

  • 신영식;박명규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.195-204
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the result of these simulation it provides the optimal design concept for the low construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF