• Title/Summary/Keyword: Collision Risks

Search Result 56, Processing Time 0.024 seconds

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Integrated Risk Management System for Intelligent Vehicle (지능형 자동차의 통합 위험 관리 시스템)

  • Yi, Kyongsu;Choi, Jaewoong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1503-1510
    • /
    • 2012
  • This paper presents an Integrated Risk Management System (IRMS), which is designed to integrate longitudinal and lateral collision avoidance systems. Indices representing longitudinal and lateral collision risks are designed. From the designed indices, an integrated control strategy is designed. A collision avoidance algorithm is designed to assist the driver in avoiding collisions by using a vehicle-driver-controller integrated linear model. The performance of the proposed algorithm is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Design of the Model for Predicting Ship Collision Risk using Fuzzy and DEVS (퍼지와 DEVS를 이용한 선박 충돌 위험 예측 모델 설계)

  • Yi, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.127-135
    • /
    • 2016
  • Even thought modernized marine navigation devices help navigators, marine accidents has been often occurred and ship collision is one of the main types of the accidents. Various studies on the assessment method of collision risk have been reported, and studies using fuzzy theory are remarkable for the reason that reflect linguistic and ambiguous criteria for real situations. In these studies, collision risks were assessed on the assumption that the current state of navigation ship would be maintained. However, navigators ignore or turn off frequent alarms caused by the devices predicting collision risk, because they think that they can avoid the collisions in the most of situations. This paper proposes a model of predicting ship collision risk considering the general patterns of collision avoidance, and the approach is based on fuzzy inference and discrete event system specification (DEVS) formalism.

Analysis of Rear-end Collision Risks Using Weigh-in-Motion Data (고속도로 Weigh-in-Motion(WIM) 이벤트 자료를 활용한 후미추돌 위험도 분석 기법)

  • Oh, Min Soo;Park, Hyeon Jin;Oh, Cheol;Park, Soon Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.152-167
    • /
    • 2018
  • The high-speed weigh-in-motion system can collect the traveling speed and load information of individual vehicles, which can be used in a variety of ways for the traffic surveillance. However, it has a limit to apply the high-speed weigh-in-motion data directly to a safety analysis because high-speed weigh-in-motion's raw data are point measured data. In order to overcome this problem, this paper proposes a method to calculate the conflict rate and the Impulse severity based on surrogate safety measures derived from the detection time, detection speed, vehicle length, vehicle type, vehicle weight. It will be possible to analyze and evaluate the risk of rear-end collision on freeway traffic. In addition, this study is expected to be used as a fundamental for identifying crash risks and developing policies to enhance traffic safety on freeways.

Analysis of Collision Risk Perceived by Ship Operators in Ship Collision Risk Situation (선박충돌 위기상황에서 선박운항자가 지각한 충돌위험도 분석)

  • Kim, Dae Sik;Yim, Jeong Bin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.447-458
    • /
    • 2017
  • Objective: The purpose of this study is to present the basic guidelines for preventing human error by measuring and analyzing the risk of collision perceived by the ship operator in the collision risk situation by using Korea Coast Guard patrol ships. Background: In the last 5 years, 97.5% of the causes of ship collision occurred at the sea was caused by human factors. However, the rate of marine accidents due to human error has not been reduced yet. Experiments and researches on the ship operators using the ships in actual operation are rarely performed. Method: Using two K.C.G Ships on the sea, the ship measured by 30 persons who are the subject of the ship (ship operator) when both ships approach and the relative distance gradually decreases in four encounter situations, perceived ship collision risk (PSCR) data were analyzed by statistical analysis. Results: The age and boarding career of the ship operator in the situation of ship collision risks encountered a negative impact on perceived collision risk in all four opposing encounter situations S1 ($000^{\circ}$), S2 ($045^{\circ}$), S3 ($090^{\circ}$) and S4 ($135^{\circ}$) respectively. That is, the higher the age of the ship operator, the lower the perceived risk of collision and the lower the age, the higher the risk of collision. Also, there was a difference between the average of group A (20~30 years) and group B (40~50 years) according to age of the ship operators at $000^{\circ}$, $045^{\circ}$ and $090^{\circ}$ and there was no difference at $135^{\circ}$. The mean difference of the experience of boarding career was also significantly different between group A (less than 4 years) and group B (more than 5 years), but there was no significant difference at $135^{\circ}$. Conclusion: The results showed that age and boarding career of the ship operators had negative impact on perceived collision risk and there was a difference in perceived risk of collision according to age and abundance of boarding career. As a result, by focusing on the ship operators who are in the age group of 20~30 years old and have less than 4 years of experience in boarding the ship. It is expected that the effect of prevention of marine accidents can be expected by avoiding collision avoidance. Application: The results of this study can be used as policy data of related organizations to prevent human error of ship operators and as training data of training institutes.

A Study on the Degree of Collision Risk through Analysing the Risk Attitude of Vessel Traffic Service Operators (해상교통관제사의 위험태도 분석을 통한 선박 충돌 위험도 연구)

  • Lee, Jin-Suk;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.93-102
    • /
    • 2017
  • When VTSOs (Vessel Traffic Service Operator) determine the degree of collision risk for two vessels, they consider comprehensive information about each vessel's course, speed, DCPA, TCPA, and encountering situation. In this study, we proposed a utility function based on the risk attitudes of VTSOs toward the Risk Index (RI). The RI was calculated using the risk of encounter, the risk of approach, and the risk of time for two vessels in order to predict each ship's collision risk from the VTS viewpoint. We obtained each coefficient of the RI and the risk attitude through a survey of collision risks among VTSOs of Korea. In order to verify whether the proposed utility is reasonable, we validated by applying the degree of collision risk to some historical cases of accidents in Busan port along with the Ship of ES value($ES_S$) of ES(Environmental Stress) model.

On an Algorithm for the Assessment of Collision Risk among Multiple Ships based on AIS (AIS 기반 다중선박 충돌 위험도 추정 알고리즘에 관한 연구)

  • Son, Nam-Sun;Oh, Jae-Yong;Kim, Sun-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.62-63
    • /
    • 2009
  • A monitoring system of collision risk among multiple ships is newly-designed in order to reduce human error and make vessel traffic control more effective. By using AIS data as ships' navigational information, an estimation algorithm of collision risk among multiple ships is newly-designed. To consider ships' course of now and future, collision risks of multiple ships can be calculated by using fuzzy algorithm. To test the performance of new algorithm, replay simulations are carried out on actual AIS data collected from VTS center of Ulsan harbor in Korea. The AIS data include 25 ships' information for two hours. In this paper, the features of newly-designed estimation algorithm of collision risk and the results of replay simulation are discussed.

  • PDF

Fundamental Research for Video-Integrated Collision Prediction and Fall Detection System to Support Navigation Safety of Vessels

  • Kim, Bae-Sung;Woo, Yun-Tae;Yu, Yung-Ho;Hwang, Hun-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.91-97
    • /
    • 2021
  • Marine accidents caused by ships have brought about economic and social losses as well as human casualties. Most of these accidents are caused by small and medium-sized ships and are due to their poor conditions and insufficient equipment compared with larger vessels. Measures are quickly needed to improve the conditions. This paper discusses a video-integrated collision prediction and fall detection system to support the safe navigation of small- and medium-sized ships. The system predicts the collision of ships and detects falls by crew members using the CCTV, displays the analyzed integrated information using automatic identification system (AIS) messages, and provides alerts for the risks identified. The design consists of an object recognition algorithm, interface module, integrated display module, collision prediction and fall detection module, and an alarm management module. For the basic research, we implemented a deep learning algorithm to recognize the ship and crew from images, and an interface module to manage messages from AIS. To verify the implemented algorithm, we conducted tests using 120 images. Object recognition performance is calculated as mAP by comparing the pre-defined object with the object recognized through the algorithms. As results, the object recognition performance of the ship and the crew were approximately 50.44 mAP and 46.76 mAP each. The interface module showed that messages from the installed AIS were accurately converted according to the international standard. Therefore, we implemented an object recognition algorithm and interface module in the designed collision prediction and fall detection system and validated their usability with testing.

A Study on Trainees' Awareness of Collision Risks (실습생의 충돌위험도 인식에 관한 조사 연구)

  • Kim, So-Ra;Park, Sang-Won;Sim, Hyo-Sang;Kim, Jong-Sung;Park, Young-Soo;Kim, Dae-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.488-498
    • /
    • 2022
  • Collision prevention education, which takes up the longest time among officer training courses, is one of the most important training and practice courses for trainees. The purpose of this study is to investigate the trainees' perception of collision risk in order to develop a systematic and quantified collision prevention training course. For this, factors for judging collision risk were derived from previous studies, and each trainee's perspective on collision risk was derived for each scenario through a questionnaire survey for trainees. Using the PARK Model, the same was compared with the collision risk perceived by the officer. Resultingly, it was found that trainees and of icers consider the distance to other ships the most important among collision risk factors. Additionally, although the risk trends of two groups for each scenario were similar, the average risk of trainees (5.39) was higher than that of officers (5.20). However, the trainees perceived a lower level of risk than the officers in certain scenarios, and this is judged to be the result of the trainees' lack of navigational experience. This study is expected to be used as basic data for the development of collision prevention practice education by quantitatively suggesting the difference between the collision risk of trainees and officers respectively.

A Study on the Improvement of Collision Prevention Algorithm for Small Vessel Based on User Opinion (사용자 의견 기반 소형선박 충돌예방 알고리즘 개선 연구)

  • Park, Min-Jeong;Park, Young-Soo;Lee, Myoung-Ki;Kim, Dae-Won;Kim, Ni-Eun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.238-246
    • /
    • 2021
  • Collision of small vessels such as fishing boats cause great personal injury. Prior to this study, the collision prevention algorithm was developed to assess the collision risk and make the collision alarm. However, a service provided for safety, such as a collision warning, not only prevents risks, but also requires a certain degree of user satisfaction to function effectively. In this study, the collision prevention algorithm for small vessels was improved to be more practical, and the effects of the improvement were confirmed by applying the algorithm. A survey conducted on the users of the collision warning service confirmed the user requirements for improving the accuracy of the collision warning system and reducing the volume and number of alarms. Accordingly, the algorithm was improved for user satisfaction, and the actual vessel experiment was performed applying the improved algorithm in an actual maritime environment. As a result, the frequency of alarm occurrence decreased compared to former algorithm, but the alarm was relatively steadily generated in dangerous situations. It was analyzed that the accuracy and practicality of the collision alarm were improved. If the practicality and reliability of the improved algorithm are verified in the further study, it will be able to effectively contribute to the prevention of collisions of small vessels.