• Title/Summary/Keyword: Colliding

Search Result 160, Processing Time 0.03 seconds

Modification of ground motions using wavelet transform and VPS algorithm

  • Kaveh, A.;Mahdavi, V.R.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.389-395
    • /
    • 2017
  • In this paper a simple approach is presented for spectral matching of ground motions utilizing the wavelet transform and a recently developed metaheuristic optimization technique. For this purpose, wavelet transform is used to decompose the original ground motions to several levels, where each level covers a special range of frequency, and then each level is multiplied by a variable. Subsequently, the vibrating particles system (VPS) algorithm is employed to calculate the variables such that the error between the response and target spectra is minimized. The application of the proposed method is illustrated through modifying 12 sets of ground motions. The results achieved by this method demonstrate its capability in solving the problem. The outcomes of the VPS algorithm are compared to those of the standard colliding bodies optimization (CBO) to illustrate the importance of the enhancement of the algorithm.

Effects of Molecular Attraction and Orientations in the Vibration-Vibration Energy Exchange

  • Ree, Jong-Baik;Chung, Keun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.124-129
    • /
    • 1986
  • The effects of molecular attraction and orientations for the energy mismatch variance, vibrational energy level and double-quantum transition, in the vibration-vibration energy exchange, have been considered. The contribution of molecular attraction increases the exchange rate of the purely repulsive interaction, in general, significantly, but which becomes smaller as the temperature is increased. As the energy mismatch is increased, its contribution is also increased, but which is small. However, its contribution for the double-quantum transition is very paramount. At each orientation, the exchange rate constants have been calculated and compared with the results for rotational average, and it is found that the exchange rate is a strong function of the orientation angles of colliding molecules. We have also discussed about the system having the strong interaction such as the hydrogen bond, and it is found that for this system the preferred orientation should be considered in order to calculate the exchange rates.

A Study on Separation Stability of The Umbilical Plug of A Store (발사체의 배꼽 플러그 분리 안정성 연구)

  • Kim, Yongil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.441-451
    • /
    • 2019
  • When a store is launched, the umbilical plug should be separated from the launcher without any physical interference and fragments. In order to satisfy these conditions, an umbilical plug and an umbilical separating device were designed. The plug is separated from the receptacle of the store while moving along inclined planes by the store thrust and the spring force connected from the launcher to the plug. As a result of the prototype test, the hanger on the store collided with the plug. Several tests were conducted after some actions were taken to prevent the collision. However, not only the same phenomenon was repeated, but also fragmentation occurred. In this study, the non-colliding conditions were analyzed through rigid and flexible multi-body dynamics analysis.

Development of I2V Communication-based Collision Risk Decision Algorithm for Autonomous Shuttle Bus (자율주행 셔틀버스의 통신 정보 융합 기반 충돌 위험 판단 알고리즘 개발)

  • Lee, Seungmin;Lee, Changhyung;Park, Manbok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, autonomous vehicles have been studied actively. Autonomous vehicles can detect objects around them using their on board sensors, estimate collision probability and maneuver to avoid colliding with objects. Many algorithms are suggested to prevent collision avoidance. However there are limitations of complex and diverse environments because algorithm uses only the information of attached environmental sensors and mainly depends on TTC (time-to-Collision) parameter. In this paper, autonomous driving algorithm using I2V communication-based cooperative sensing information is developed to cope with complex and diverse environments through sensor fusion of objects information from infrastructure camera and object information from equipped sensors. The cooperative sensing based autonomous driving algorithm is implemented in autonomous shuttle bus and the proposed algorithm proved to be able to improve the autonomous navigation technology effectively.

Temperature Dependence of the Rate Constants of the VV Energy Exchange for N$_2$(v=1)+O$_2$(v=0)$\rightarrow$N$_2$(v=0)+O$_2$(v=1)

  • Ree, Jong-Baik;Chung, Keun-Ho;Kim, Hae-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.241-245
    • /
    • 1986
  • The vibration-vibration energy exchange of $N_2(v=1)+O_2(v=0){\to}N_2(v=0)+O_2(v=1)$ has been investigated, in particular, at low temperatures. The energy exchange rate constants are calculated by use of the solution of the time-dependent Schrodinger equation with the interaction potential of the colliding molecule as a perturbation term. The predicted rate constants are significantly agree with a experimental values in the range of 295∼$90^{\circ}K$. The consideration of the VV-VT coupling decreases the predicted pure VV energy exchange value by a factor of ∼2. When the collision frequency correction is introduced, the VV-VT rate constant is consistent with the observed value in the liquid phase. The consideration of the population of the rotational energy level increases the VV-VT value significantly.

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

Neuro-fuzzy modeling of deformation parameters for fusion-barriers

  • Akkoyun, Serkan;Torun, Yunis
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1612-1618
    • /
    • 2021
  • The fusion-barrier distribution is very sensitive to the structure of the colliding nuclei such as nuclear quadrupole and hexadecapole deformation parameters and their signs. If the nuclei that enter the fusion reaction are deformed, the barrier problem becomes complicated. Therefore the deformation parameters are taken into account in the calculations. In this study, Neuro-Fuzzy approach, ANFIS, method has been used for the estimation of ground-state quadrupole (𝜀2) and hexadecapole (𝜀4) deformation parameters for the nuclei. According to the results, the method is suitable for this task and one can confidently use it to obtain the data that is not available in the literature.

Experimental studies of damage to aircraft skin under the influence of raindrops

  • Minggong Sha;Ying Sun;Li Yulong;Vladimir I. Goncharenko;Vladimir S. Oleshko;Anatoly V. Ryapukhin;Victor M. Yurov
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.555-572
    • /
    • 2023
  • Airplanes in flight collide with raindrops, and the leading edges of the airframe can be damaged when colliding with raindrops. A single waterjet testing platform was created to study rain erosion damage. Carbon fiber samples with three types of skins were studied and the mechanical properties were measured using a nanoindentation instrument. The research results show that the impact force on the sample increases with the continuous increase in the impact speed of raindrops, which leads to an increase in the damage area. Sheathing with low surface roughness is more damaged than other sheathings due to its rougher surface, and the result proves that surface roughness has a more significant effect on rain erosion damage to sheathings compared to their hardness.

The configuration analysis for the storyboard image (스토리보드 이미지 구성 분석)

  • Lim, Woon-Joo
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.403-408
    • /
    • 2013
  • The configuration analysis for the image appeared in the storyboard as the 1st stage to change the scenario to the image expressed the visual phenomenon image starting from the literalism. The simultaneity of description on the interpretative level of the narrative description may describe various information multiple simultaneously, the relationship has been presented as a lot of these information has been weaved as one episode. The incident time of narrative description as the scene described mainly objectively and illustratively has been used usefully to present the accurate information for characters or incidents. The time series of narrative description appeared as one episode by expressing various spaces or images under the continuity of flow according to the time. The collision image seen from the angle of internal ignition played a role to create the meaning colliding into each other or interconnecting symbolic effects appeared as respectively fragmented image, the continuity of space played a role of expressing the different symbol when the image of completely different space is connected to one context, the continuity of time as well makes a different symbolism by interpreting symbols appeared as each images under the flow of time. These results show that the narrative description may be expressed in accordance with the narrative structure from the viewpoints of narrative description, but the internal ignition may be interpreted through the cultural and periodical background widely known in those years based on the experience and information capability the audiences are keeping not by any descriptive structure. Images appeared in the internal ignition appeared by colliding into each other or amplifying mutually no related scenes and revealing the overall symbolism by reinterpreting again.

Numerical Analysis of Synchronous Edge Wave Known as the Driving Mechanism of Beach Cusp (Beach Cusp 생성기작으로 기능하는 Synchronous Edge Wave 수치해석)

  • Lee, Hyung Jae;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.409-422
    • /
    • 2019
  • In this study, we carried out the 3D numerical simulation to investigate the hydraulic characteristics of Synchronous Edge wave known as the driving mechanism of beach cusp using the Tool Box called the ihFoam that has its roots on the OpenFoam. As a wave driver, RANS (Reynolds Averaged Navier-Stokes equation) and mass conservation equation are used. In doing so, we materialized short-crested waves known as the prerequisite for the formation of Synchronous Edge waves by generating two obliquely colliding Cnoidal waves. Numerical results show that as can be expected, flow velocity along the cross section where waves are focused are simulated to be much faster than the one along the cross section where waves are diverged. It is also shown that along the cross section where waves are focused, up-rush is moving much faster than its associated back-wash, but a duration period of up-rush is shortened, which complies the typical characteristics of nonlinear waves. On the other hand, due to the water-merging effect triggered by the redirected flow toward wave-diverging area at the pinacle of run-up, along the cross section where waves are diverged, offshore-ward velocity is larger than shore-ward velocity at the vicinity of shore-line, while at the very middle of shoaling process, the asymmetry of flow velocity leaned toward the shore is noticeably weakened. Considering that these flow characteristics can be found without exception in Synchronous Edge waves, the numerical simulation can be regarded to be successfully implemented. In doing so, new insight about how the boundary layer streaming occur are also developed.