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The vibration-vibration energy exchange of Na(v=1)+0,(v=0)-N,(v=0)+O.v=1) has been investigated, in particular, at
low temperatures. The energy exchange rate constants are calculated by use of the solution of the time-dependent Schradinger
equation with the int -raction potential of the colliding molecule as a perturbation term. The predicted rate constants are
significantly agree with a experimental values in the range of 295~90°K. The consideration of the VV-VT coupling decreases
the predicted pure VV energy exchange value hy a factor of ~2, When the collision frequency correction is introduced, the
VV-VT rate constant is consistent with the observed value in the liquid phase. The consideration of the population of the
rotational energy level increases the VV-VT value significantly.

Introduction

Information on the temperature dependence of vibrational
energy exchange in diatomic molecules at high temperatures
is well documented but such information is sparse near and
below room temperature, including the liquid state. But,
recently, there has heen a growing number of experiments
performed in which the vibrational relaxation of small, non-
polar molecules in the liquid state is measured. One such
system is N,(v = 1)-0, system, whose liquid state has been the
subject of extensive discussion in recent years.'-? Then, it has
been shown that the dependence of rate constants on
temperature is quite different at low temperatures compared
with that at high temperatures. Thus, extra polations from
high to lower temperatures are likely to give misleading
results.>* At present, theoretical calculations cannot be used
to predict rate constants at low temperatures.® This is partly
due to the lack of accurate information on intermolecular
potentials. Deviations from the Landau-Teller relation®
log{P)~T"'/* become increasingly pronounced at low
temperatures, with the probabilities being greater than
predicted. This effect may be due to attractive forces which
can affect both the probability of deactivation per collison and
the number of trajectories leading to collisions. Although the
gas-phase theory based on a binary-collision model is not ex-
pected to describe vibrational relaxation in the liquid state ade-
quately, it should be instructive to extend such a model at least
down to near the boiling point, at which the experimental data
are now becoming available.' Among the existing theoretical
approaches to gas-phase collisions is the semiciassical method,
which we have outlined three years ago.” We shall use it here
to determine the temperature dependence of the vibrational
relaxation process over 90-300°K. On the other hand, in the
vibrational relaxation process two processes, i.e., VT and VV
are dominant, but VT deactivation of Ni(v=1) by O, is too
small to contribute to the vibrational relaxation considerably
under the temperature range mentioned above. Therefore we
shall neglect the VT deactivation and consider that the vibra-
tional relaxation is proceeded only by the VV deactivation.

Interaction Potential and Energy Transfer
Rate Constant

For the collision of two diatomic molecules N, and O,, the
potential energy of the interaction will be assumed as a Morse
type composed of four atom-atom interactions. That is,

U(r,,r,,r,,f‘)—% U (1)

where Ulr) = D{exp{(r.-t.)/a]- 2exp[(r.-¥,)/2a] }; D measures
the depth of the potential well and a is the potential range
parameter. Here r.,'s are the equilibrium values of r.'s which
are the distances between atoms. For the distance r between
the centers of mass significantly greater than the equilibrium
bond distance d({. e., 4, and d; for molecule 1 or 2), the atom-
atom distances can be approximated as 7, ;=rt-'2{(d, +¢,)
€038, + Yo {d, + @:)c058; and 73.4=r+ Y%ld, +¢,) c0sé + ¥a{dr +¢2)
cos@, where 6, is the angle between the molecular axis and
7. Because r,=r(7,¢,,¢2,8,,8,), the overall potential can be
represented by U713, 75,70 = U(7,4,,42,6,,8:). Then the interac-
tion potential can be expressed in the form:

U(f’QI'Q:’ b, 9,]-”{1‘,0.0, [ 9;)+Q: (aU/aq,])o

41 (0U/0a,)s+ 147 (270 /24 )0+ 501 (2U/0a)),

+¢.4s (a’U/aQLaq:)l+"' 2)

where all derivatives are evaluated at ¢,=¢,=0. As it will be
shown later, we shall replace the ¢,, g, coordinates by the
boson operators (4} a,). If this is done, the terms involving ¢,
¢2* will be converted into the forms of 4}? and &2, which are
“two-quantum” VT operators since they produce or eliminate
two vibrational guanta at a time. Moreover, here, we can
simplify Uir,4,.¢2,0,,8:) by neglecting this “two-quantum’ VT
operators. This does not imply that multiquantum VT excita-
tion is eliminated but rather implies that a two-quantum tran-
sition, for instance, occurs through two one-quantum jumps,
rather than by a direct two quantum jumps. As demonstrated
in previous paper,® the latter process is in fact more than two
orders of magnitude less probable than the former for almost
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any diatomic molecule except in very energetic collisions, so
that neglecting the “‘two-quantum’ operators in {X(r,4,,4,,6,,8;)
is not a very restrictive approximation.
We can, thus, now write if it truncated to second order,
Ulr,¢,,4:. 8., 8;) =U(r,0,0, 8,, 8,) +q, (8U/3q.)0
+4,(3U/54:) s +8,4, (3'U/30,8¢,)0 B)

When all derivatives are evaluated, the result of Uir,¢,,4.,8.,8,)
is summarized as follows?:

Ulr,q,,0:. 8., 8,) -_:”'E‘:. (s tr, 8,, 8,)+Ul(r q,, 8., 86,)

+U(r, q., 8., #:)+US (r, g, 21, 8,, 84))

=U, (r, 8,,8,)+U, (r,q,, 8. 6,)

+U, (r, @y, 6y, 84) U, (r, 31, Qs, B4, 84)
4)

For the present VV energy exchange process with the energy
mismatch transferred to tran<lation, the appropriate form of
the total interaction energy obtained from the above approx-
imation is

8!) -U. {rt a]‘ 6!} +Uu (rn q.] » Qg, 8[. 83) {5)

On the other hand, for the present VV energy transfer, the
removal of AE by the rotational degree of freedom is not im-
portant. The rotation, however, will certainly affect the colli-
sion dynamics, and hence, energy exchange probabilities; we
shall replace this effect by the rotation average as shown
below.

T, __f f Uy (r, 8,, 8,)sing,sing,d8,d8, ®)

U(rt 1,42, 8h

and
E {(r, 2, q, -'_f f U,y (r, 45,95, 85, 0,)
sinﬂ, sinﬂ,d&ldﬂg {7)
Then,
- ry~r re—7
Uu(f)-D'[exD(—a'—)-ZexP(ZG )) 8)
Eu(r.¢1.¢.)-D"[aexp(r'-r)-ﬁexp(%_"t)]%3—' @}
1%t
where
(4sinh-}-Q, sinfl*l—Q:)'
D¥=D 2 2
@].Q,sinAqQ, sinh@,
a = {1-Q,coth@,} (1-Q,cothQ,)
B=2(1- Q‘ th%)(l-%coth%)

r}'is the new equilibrium distance.” The collision trajectory
for the present system can be determined by solving the equa-
tion of motion written in the form

t= (g [T E-T () dr (10)

where E is the relative kinetic energy and r, is the point of
closest approach (t is taken to be zero at this point). For the
potential function given by Eq.(8}, the integration can be done
analytically to give
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exp(rz-;r)
- E 1
(ED*+D*1 )\ yie D* . {11
cosh(G) () - (25

which transforms U,1(7,¢,,9.), given by Eq.(9), into the time-
dependent perturbation energy U.a(£.4.4.).

The Hamiltonian of the collision system for VV energy ex-
change is

H()

P p 1 _
1 + 2‘,;! + = 3 M.m,=q,,’+ EM,%‘Q,’-{-U“(;'Q“%) (12)

where p s are the momenta, w's the angular frequencies, and
M's the reduced masses. In terms of latter operators (a},2.),
Eq.(12) can be written as’

1 1
+?) +Xw, (aIa,-I—E}

+F (t){afa,+a,a!) (13)

Hi) =%, (ala,

where
Fi) -%nD‘d,“d,“ (MM, w0 w3) ™ {a exp [ (727 (2))/a)

-8 exp (r¥~r (1)) /2a)t.ala} and a,a, are discarded because
they represent the simultaneous excitation and de-excitation,
respectively, of both oscillators. To formulate energy ex-
change probabilities, we now need to determine how the state
of the interaction system change in time. In order to give the
time development of the system and to describe processes
which involve a change in the vibrational state, we require
the state vector of the system |¢{t)> change in accordance
with the Schrédinger equation of rmotion:

iR g >=H{1) | ¢t)> (14}

Then, according to Wei and Norman’s Lie algebraic
method,*' we can express the solution of Eq.(14) for H(t)
given by Eq.(13) as

lg @) > = {ﬁl exp (g, (VH, 1 9 5) > (15)

where g{t) are complex valued functions of time and H, are
constant operators. Thus, since the operators a{a,, a2}, and
(ala,-ala,) form a closed system with respect to commuta-
tion, we look for the solution in the form |w()>=c{#) exp
[g:(faia:] exp (g:(g(thaal] exp [g(Dala-ala:)]|d( - o)>=S(H
[¢(—o)>. |¢(f> provides a complete description of the
dynamics throughout the collision. Since the initial values of
the functions are g,(- ) =gy(- ®)=gs(- ©)=0 and |o(- =)= 1,
when (¢ (—0)> is specified, we can obtain a unique solution
for |¢(2)> at all subsequent times through the transformation
of {¢(—0)> by S(t). Thus the solution of Eq.(14) reduces to
the determination of ¢(2), £,(8), £:(1), and &;(#). Once these func-
tions are determined VV energy exchange probabilities can
be calculated from the expression

"' L2 3
mIv !ll‘l‘l < v,v

718 () )v0,>|* (16)
Introducing |[¢(#)> into the wave equation, setting the coeffi-
cients of the operators ala,, @,a}, and a}a, - aja, equal to zero,
we obtain the following differential equations:”
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5(1)/C(¢)-—-é—i(ml+m=)

ihg, 1)+ AEg ) +F gl @) -F(1)=0
ihé: (¢) - AES: () ‘EF(”S: (”8: @) -F(t)=0

iR, (1)~ F (1)g, (t) -%AE=0

For an arbitrary form of F{t), analytical forms of the solutions
cannot be obtained, but the differential equations appear in
simple forms, so that application of the Runge-kutta method, "
for example, is straightforward. The general form of the VV
energy exchange probability for #,¢,— {4 can be written, tak-
ing [¢(-¥>=|pp,>, as't1I-M

040 e
Pl (B) =2t lexo ({0, — 5,16 (=) "I, (00) | “r-ov
% [“ (g, (g, (W)]'(!-';“"m}!]: (18}

mmo iy — v, +m) v, —m)}!

for v/>w, and ¢>v,. For v{<v,, we must interchange ¢, and ¢,
as well as g,{«) and g;{=0), which are not equal to each other.
For the present 1,0—~0,1 VV energy exchange system,

Py (E) = |exp (- gy () }] )&, (o0) |? (19}

We shall replace E in P(E) by the symmetrized energy
E;= %[E” +E}]. To complete the formulation of the energy
transfer probability expression we must include the effects
of nonzero impact parameter(b) collisions. An approach of in-
cluding these effects is to replace E by E(1-b*r*?), i.e., we
now have P{43(E,b). Here r* is a characteristic distance which
can be defined as the hard-sphere collision diameter. With
these considerations we write the thermal-average probability

t ] e
W[ ["2xb EPYE.6)aED  (20)

n(T)=
The integration will be carried out by use of Simpson’s 1/3
rule on a IBM computer. We converted the calculated values

of P{s(T) to the rate constants as's

S (T)=Z PO(T)
=32 753X 10! (-E) APT) em’/mol-sec

=4, 571X 10" 1r*? (-E)”‘Pl:' (T') em?/molecule-sec (21)

where y is the reduced mass in amu and r* in A. Here the
rate constants have been converted from probabilities for
energy exchange by multiplying by the hard sphere collision
frequency. The hard sphere diameter was obtained from
Hirschfelder et al.® This simple calculation applies only if the
gases are perfect, Gas imperfections lead to collisional fre-
quencies at low temperatures being somewhat higher than
those for a perfect gas.

Results and Discussion

In this work we have calculated rotationally averaged rate
constants for nonresonant VV energy transfer process, i.e.,
N,(v=1)+0,(v=0)=N,(v=0)+0,v=1) system. To calculate
rate constants, we use**’’ D« 95.66k and a~' =4.75A"t. The
energy level spacings and the value of the energy mismatch
AE are determined using spectroscopic constants from
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Mizushima.'* The calculated rate constants are shown in
Figure 1 together with the experimental data of Gregory et
al.! and Maricq ¢f al.? over the temperature range 90-300K:
the calculation is extended to temperatures below 90K. This
extension to lower temperatures is intended to show predic-
tions of the gas-phase model, but k=(T)#k“*(T) so the calcula-
tion at such temperatures may not be physically meaningful.
However, gas-phase rate constants calculated from the
isolated binary collision model is known to be smaller than
liquid-phase values by a factor of about 5 due to the change
in the collision frequency.'*?* Thus useful information on the
liquid-phase rates can be extracted from such calculations.
In Fig. 1 we notice that the present results are in reasonable
agreement with the experimental. However, near 300K the
former overestimates the fatter. This trend is similar to Maricq
et al.?

Among the terms discarded from Eq.(2) in deriving Piu(E)
are g(8U/24,)=G(Ma] +a,), which cause pure VT transi-
tions. However, they can affect the VV process at high colli-
sion energies through the VT steps AB(v=1)+AB(v=0)and
CD{v = 0)+CD(v = 1}; in each of these “half’’ steps, the energy
fiw is either absorbed or released by the translational motion,
but the combined process is still the VV process, ic., in
the present case Niv=1)+0Ov=0=N;iv=00+0,(V=1).
Such VT steps are very inefficient and do not affect the VV
process at low collision energies, but at energies several times
Tw, they can become strongly coupled with the pure VV pro-
cess, We also note that the second-order derivatives in Eq.(2),
g} d*U/3¢)=K A {Ha +a)*, are not only responsible for
two-quantum processes but also for time-dependent frequen-

T
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Figure 1. Plot of rate constant vs temperature, The solid curve is
obtained from Eq.(2}). Experimental data are taken from: @ Ref. 1;
O Ref. 2.
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¢y corrections. Therefore, we now write the Hamiltonian for
the VV-VT process in the term?®

HeH 4+ H™V "= [h o+ 2K, (1)) (ala, +1)

2
+ (haoy+2K, ) (afa, +5) +G, ) (6] +a)
+G, () (6] +a,) +F (t) (afa, +0,0] ) 22)

and look for the solution of Eq.(14) in the form

| (£} > "

=c{t)exp(s, (t)a,6] ] exp (g, (t)ala,) exp (8, (t) (ala, - ala,))
Xexp(g,{t)a!)exp (g, (t)a,) oxplg, (t}al)exp (g, (t)a,]) | ¢ (&) >
=S (4) o0, > (23)
After substituting these two expressions in Eq.(14), we set
the coefficient of each operator or operator product equal to
zero to.obtain, in addition to the equation for g,(9, g.(#) and

() already given Chap. 2 for the pure VV case, the follow-
ing differential equations:

é@t)/elt)= -1 (witw,) -8 (G 0)g ) +Gi (1) 8 (1))

2

~id ' K, () +K, (1))
& @) +ilo 287K, (1))g B} Fih ' F () g @) = - ik G, (1)
&) — il +287'K, () )g, @) = i8"F (1) g, (1) = = iA G, (t)

T
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lo-l7 | -
K F :
-8 | _
10 E 3
- .
t -
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Figure 2. Plot of 7 vs T~/ The solid curve is for the VV-VT

and the broken curve for the pure VV. Experimental data are taken
from: ® Ref. 1; O Ref. 2.
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& (1) +ilw, +257'K, (1) ]g () +id'F(t)g, ) = — ik G, (t)
&1 (1) =il 287K, (1) )g: (1) — i F g, (1) = — i5'G, (1)
(24)

The initial conditions are g{-)=g(—®)=g{-o)=g
{-2)=0 and |c{-}|=1. Here, the coefficients of a,", a.. a,",
and a, produced the differential equations in g,(f), g.(¢), 2:{¢),
and g,(#), respectively; terms independent of these operators
led to the equation of c(f).

From the substitution of Eq.(23) in (16) and {ollowed by
exponential operations of |»,,>, we obtain, after lengthy but
straightforward applications of commutation relations, the
VV-VT probability for v,0,~>vie as

WESEREA
Po =tm] S e ) lexp £,0) (0, - 001
-t 1+

X

*E Y (gs (D& ()3 (&, (8)8, (1)) * (g, (1)) (g, (1)) *

e om0 Tmo s=¢ nl (9, +s=r—v,+n)!p! (v;-s+r-v,+p)!

(g (£)) 51272 (g, (1) )°*-* " (g, —s+7) 1 (v,+3)!

X t
rlat (o] ~n)! (v;=p)! (v,=4)! ]
(25)
For the present 10—~01 process,
Pl
=le ()] explg, ¢)]1* 18, (8) (1+g, ()@, (1)) +8s (1) g (8} (°
(26)

In similar to g,(2), 2,(#) and g(f), the numerical solutions of g.(¥),
&:(5), g#) and g,() can be also obtained. Once the solutions
are found, the VV-VT transition probability for 10->01
process can be determined from Eq.(26). In the computa-
tions, the integration range and the number of steps were
adjusted until changing them no longer affected the resuits.
For each value of E, we found choosing the integration range
from v=(E/2u)*tla= - 10 to 10 and the integration steps of
700 satisfied this condition. Calculated values of VV-VT
energy exchange rate constants are plotted in Figure 2 with
the pure VV results as a function of a temperature, This figure
shows that the VV-VT energy exchange rate constants are
smaller than the pure VV results by a factor of ~2. For ex-
ample, at 295K, A )¥V=2.1 x 10-""cc/molecule-sec, whereas
KTYV-vT=1.0x 10"cc/molecule-sec, which is very close to
the observed value® of 0.8 x 107, At 91K, there is an impor-
tant study of liquid system by Chandler and Ewing® giving
k(T=m1.2+0.9%10"*"cc/molecule~-sec. At this temperature,
VV-VT energy exchange rate constant is 6.3x1073%c/
molecule-sec. When this value is multiplied by 5, the
result{~-3.0 x 10-*cc/molecule~-sec) is larger than the measured
rate constant by only a factor of 2.5.

On the other hand, for the present VV energy exchange
process, the energy mismatch is 773¢m™, which is to be con-
trasted with the rotational energy spacing. Each of the
molecules N; and O, has a rotational constant of =2c¢m™.
Therefore, at 295K the rotational state most likely populated
is J =7, while at 90K it is J = 4. The rotational energy spacing
to states adjacent to J=7 is =30cm™, and to states adjacent
to ] = 4 the spacing is 15¢cm™. Counting simultaneous changes
of A] =1 in both of the colliding molecules leads to a maximum
change in the rotational energy of =60cm-*. This is ~10% of
the vibrational energy defect. When the simultaneous changes
of the rotational energy is considered, the predicted VV-VT
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rate constants are increased by a factor of ~2 in the considered
temperature range. For example, at 295K, X{7)=1.0x10""7
cc/molecule-sec for no-congideration of the simultaneous
changes of the rotational energy, while XA T)=2.0x10"""
cc/molecule-sec for consideration. At 91K, A(T)=6.3x 10"
cc/molecule~sec for the former and X 7)=9.4 x 10"**cc/mole-
cule-sec for the latter.

The energy transfer probabilities are converted into the
rate constants by multiplying them by an average hard sphere
collision frequency using collision diameter taken from
Hirschfelder ef a.' In fact it is a simplification to use such
a collision frequency because both the magnitude of the
velacities effective in causing energy transfer and the frequen-
cies of those collisions depend upon severa) factors. This in-
cludes not only the frequencies of the vibrations involved and
the steepness of the intermolecular repulsive potential, but
also an attractive forces and the masses of the colliding
species. When the collision frequency correction of about 5
is introduced, the VV-VT calculation appears to give rate con-
stant which is consistent with the available experimental value
in the liquid phase. Until a successful liquid-phase theory
capable of producing accurate rate constant is developed, we
therefore suggest that gas-phase models like the present one
can serve as a physical guide to researchers in this field.
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