Browse > Article
http://dx.doi.org/10.1016/j.net.2020.10.017

Neuro-fuzzy modeling of deformation parameters for fusion-barriers  

Akkoyun, Serkan (Department of Physics, Faculty of Sciences, Sivas Cumhuriyet University)
Torun, Yunis (Department of Electric-Electronics Engineering, Sivas Cumhuriyet University)
Publication Information
Nuclear Engineering and Technology / v.53, no.5, 2021 , pp. 1612-1618 More about this Journal
Abstract
The fusion-barrier distribution is very sensitive to the structure of the colliding nuclei such as nuclear quadrupole and hexadecapole deformation parameters and their signs. If the nuclei that enter the fusion reaction are deformed, the barrier problem becomes complicated. Therefore the deformation parameters are taken into account in the calculations. In this study, Neuro-Fuzzy approach, ANFIS, method has been used for the estimation of ground-state quadrupole (𝜀2) and hexadecapole (𝜀4) deformation parameters for the nuclei. According to the results, the method is suitable for this task and one can confidently use it to obtain the data that is not available in the literature.
Keywords
Deformation deformation; Nilsson parameters; Artificial intelligence; ANFIS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Moller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012), Atomic Data Nucl. Data Tables 109-110 (2016) 1-204, https://doi.org/10.1016/j.adt.2015.10.002.   DOI
2 S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, I.L. Lamm, P. Moller, B. Nilsson, On the nuclear structure and stability of heavy and superheavy elements, Nucl. Physics, Sect. A. 131 (1969) 1-66, https://doi.org/10.1016/0375-9474(69)90809-4.   DOI
3 P. Moller, A. Iwamoto, Macroscopic potential-energy surfaces for arbitrarily oriented, deformed heavy ions, Nucl. Phys. 575 (1994) 381-411, https://doi.org/10.1016/0375-9474(94)90197-X.   DOI
4 L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353, https://doi.org/10.1016/S0019-9958(65)90241-X.   DOI
5 S. Akkoyun, T. Bayram, Estimations of fission barrier heights for Ra , Ac , Rf and Db nuclei by neural networks, Int. J. Mod. Phys. E. 23 (2014) 1450064, https://doi.org/10.1142/S0218301314500645.   DOI
6 S. Akkoyun, Estimation of fusion reaction cross-sections by artificial neural networks, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 462 (2020) 51-54, https://doi.org/10.1016/j.nimb.2019.11.014.   DOI
7 I. Eker, Y. Torun, Fuzzy logic control to be conventional method, Energy Convers. Manag. 47 (2006) 377-394, https://doi.org/10.1016/j.enconman.2005.05.008.   DOI
8 M. Sugeno, K. Tanaka, Successive identification of a fuzzy model and its applications to prediction of a complex system, Fuzzy Set Syst. 42 (1991) 315-334, https://doi.org/10.1016/0165-0114(91)90110-C.   DOI
9 T. Bayram, S. Akkoyun, S.O. Kara, A study on ground-state energies of nuclei by using neural networks, Ann. Nucl. Energy 63 (2014) 172-175, https://doi.org/10.1016/j.anucene.2013.07.039.   DOI
10 A.B. Balantekin, N. Takigawa, Quantum tunneling in nuclear fusion, Rev. Mod. Phys. 70 (1998) 77-100, https://doi.org/10.1103/revmodphys.70.77.   DOI
11 R.C. Lemmon, J.R. Leigh, J.X. Wei, C.R. Morton, D.J. Hinde, J.O. Newton, J.C. Mein, M. Dasgupta, N. Rowley, Strong dependence of sub-barrier fusion on the nuclear hexadecapole deformation, Phys. Lett. B 316 (1993) 32-37, https://doi.org/10.1016/0370-2693(93)90653-Y.   DOI
12 W. Nan, D. Liang, Z. En-Guang, W. Scheid, Nuclear hexadecapole deformation effects on the production of super-heavy elements, Chin. Phys. Lett. 27 (2010), 062502, https://doi.org/10.1088/0256-307X/27/6/062502.   DOI
13 K. Hagino, S. Sakaguchi, Subbarrier fusion reactions of an aligned deformed nucleus, Phys. Rev. C 100 (2019), 064614, https://doi.org/10.1103/PhysRevC.100.064614.   DOI
14 A.C.F. Guimaraes, D.C. Cabral, C.M.F. Lapa, Adaptive fuzzy system for degradation study in nuclear power plants' passive components, Prog. Nucl. Energy 48 (2006) 655-663, https://doi.org/10.1016/j.pnucene.2006.05.002.   DOI
15 D. Jain, R. Kumar, M.K. Sharma, Effect of deformation and orientation on interaction barrier and fusion cross-sections using various proximity potentials, Nucl. Phys. 915 (2013) 106-124, https://doi.org/10.1016/j.nuclphysa.2013.07.002.   DOI
16 G. Montagnoli, A.M. Stefanini, Recent experimental results in sub- and near-barrier heavy-ion fusion reactions, Eur. Phys. J. A. 53 (2017) 169, https://doi.org/10.1140/epja/i2017-12350-2.   DOI
17 S.V.S. Sastry, S. Santra, Structure information from fusion barriers, Pramana - J. Phys. 54 (2000) 813-826, https://doi.org/10.1007/s12043-000-0177-z.   DOI
18 V. Novak, I. Perfilieva, A. Dvorak, Insight into fuzzy modeling. https://doi.org/10.1002/9781119193210, 2016.
19 E. Wesolowski, The quadrupole deformation parameters of charge distributions in nuclei, Acta Phys. Pol. Ser. B. 15 (1984) 559-568.
20 C.H. Dasso, S. Landowne, A. Winther, Channel-coupling effects in heavy-ion fusion reactions, Nucl. Physics, Sect. A. 405 (1983) 381-396, https://doi.org/10.1016/0375-9474(83)90578-X.   DOI
21 S. Akkoyun, T. Bayram, T. Turker, Estimations of beta-decay energies through the nuclidic chart by using neural network, Radiat. Phys. Chem. 96 (2014) 186-189, https://doi.org/10.1016/j.radphyschem.2013.10.002.   DOI
22 J. Wu, H. Wu, Y. Song, T. Zhang, J. Zhang, Y. Cheng, Adaptive Neuro-fuzzy inference system based estimation of EAMA elevation joint error compensation, Fusion Eng. Des. 126 (2018) 170-173, https://doi.org/10.1016/j.fusengdes.2017.11.025.   DOI
23 X.K. Wang, X.H. Yang, G. Liu, H. Qian, Adaptive neuro-fuzzy inference system pid controller for SG water level of nuclear power plant, Proc. 2009 Int. Conf. Mach. Learn. Cybern. (2009) 567-572, https://doi.org/10.1109/ICMLC.2009.5212517.   DOI
24 Y. Torun, G. Tohumolu, Designing simulated annealing and subtractive clustering based fuzzy classifier, Appl. Soft Comput. J. 11 (2011) 2193-2201, https://doi.org/10.1016/j.asoc.2010.07.020.   DOI
25 A. Iwamoto, P. Moller, Nuclear deformation and sub-barrier fusion cross sections, Nucl. Phys. 605 (1996) 334-358, https://doi.org/10.1016/0375-9474(96)00155-8.   DOI
26 S.A. Hosseini, I. Esmaili Paeen Afrakoti, Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS), J. Radiat. Res. 59 (2018) 436-441, https://doi.org/10.1093/jrr/rrx087.   DOI
27 S.A. Ibrahem, A. Sahiner, A.A. Ibrahim, Fuzzy logic modeling for prediction of the nuclear tracks, J. Multidiscip. Model. Optim. 1 (2018) 33-40. https://dergipark.org.tr/tr/pub/jmmo/issue/38716/392082#article_cite.
28 M. Dlomo, S. Chowdhury, S.P. Chowdhury, ANFIS based modelling of Boron concentration in a Pressurized Water Reactor in response to changes in power generation, in: IEEE PES Gen. Meet, IEEE, 2010, pp. 1-8, https://doi.org/10.1109/PES.2010.5588203.   DOI
29 P. Moller, R. Bengtsson, B.G. Carlsson, P. Olivius, T. Ichikawa, H. Sagawa, A. Iwamoto, Axial and reflection asymmetry of the nuclear ground state, Atomic Data Nucl. Data Tables 94 (2008) 758-780, https://doi.org/10.1016/j.adt.2008.05.002.   DOI
30 M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Measuring barriers to fusion, Annu. Rev. Nucl. Part Sci. 48 (1998) 401-461, https://doi.org/10.1146/annurev.nucl.48.1.401.   DOI
31 A. Adineh-Vand, M. Torabi, G.H. Roshani, M. Taghipour, S.A.H. Feghhi, M. Rezaei, S.M. Sadati, Application of adaptive neuro-fuzzy inference system for prediction of neutron yield of IR-IECF facility in high voltages, J. Fusion Energy 33 (2014) 13-19, https://doi.org/10.1007/s10894-013-9631-z.   DOI