• Title/Summary/Keyword: Collapsed Area

Search Result 125, Processing Time 0.04 seconds

Effect of Ferro-cement retrofit in the stiffened infill RC frame

  • Arulselvan, Suyamburaja;Sathiaseelan, P.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.511-518
    • /
    • 2017
  • This paper presents an experimental investigation on the contribution of RCC strip in the in-filled RC frames. In this research, two frames were tested to study the behavior of retrofitted RC frame under cyclic loading. In the two frame, one was three bay four storey R.C frame with central bay brick infill with RCC strip in-between brick layers and the other was retrofitted frame with same stiffened brick work. Effective rehabilitation is required some times to strengthened the RC frames. Ferrocement concrete strengthening was used to retrofit the frame after the frame was partially collapsed. The main effects of the frames were investigated in terms of displacement, stiffness, ductility and energy dissipation capacity. Diagonal cracks in the infill bays were entirely eliminated by introducing two monolithic RCC strips. Thus more stability of the frame was obtained by providing RCC strips in the infill bays. Load carrying capacity of the frame was increased by enlarging the section in the retrofitted area.

Assessment of Sinkhole Occurrences Using Fuzzy Reasoning Techniques

  • Deb D.;Choi S.O.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2004.10a
    • /
    • pp.171-180
    • /
    • 2004
  • Underground mining causes surface subsidence long after the mining operation had been ceased. Surface subsidence can be in the form of saucer-shaped depression or collapsed chimneys or sinkholes. Sinkhole formations are predominant over shallow-depth room and pillar mines having weak overburden strata. In this study, occurrences of sinkholes due to mining activity are assessed based on local geological conditions and mining parameters using fuzzy reasoning techniques. All input and output parameters are represented with linguistic hedges. Numerous fuzzy rules are developed to relate sinkhole occurrences with input parameters using fuzzy relational matrix. Based on the combined fuzzy rules, possibility of sinkhole occurrences can be ascertained once the geological and mining parameters of any area are known.

  • PDF

Slope Stability Assessment for Colluvial Soil Slumps of the Danyang Region (단양지역 붕적토 붕괴사면의 안정평가)

  • Bae, Woo-Seok;Lee, Bong-Jik;Jang, Kwang-Tak
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.74-80
    • /
    • 2007
  • In this study, a documentary survey, face mapping, and stability analysis were performed on the collapsed colluvial soil slope. The purpose of this paper is to identify the cause of slope failure and determine slope stability for similar areas. Boring samples were extracted from the slump and laboratory tests were performed to find out the cause of slope failure. In addition, the limit equilibrium method was used in order to determine the stability of the slope. As a result of this investigation and the analysis of data, the type of collapse and cause of slope failure have been shown to have a strong correlation with the natural geographical and geological features which make up the collapse profile of the study area. These results will help to develop guidelines for formulating countermeasure methods.

Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic Properties of Branched-Chain Alkanes

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.501-509
    • /
    • 1997
  • In recent papers[Bull. Kor. Chem. Soc. 1996, 17, 735; ibid 1997, 18, 478] we reported results of molecular dynamics (MD) simulations for the thermodynamic, structural, and dynamic properties of liquid normal alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the corresponding properties of liquid branched-chain alkanes using the same models. The thermodynamic property reflects that the intermolecular interactions become weaker as the shape of the molecule tends to approach that of a sphere and the surface area decreases with branching. Not like observed in the straight-chain alkanes, the structural properties of model Ⅲ from the site-site radial distribution function, the distribution functions of the average end-to-end distance and the root-mean-squared radii of gyration are not much different from those of models Ⅰ and Ⅱ. The branching effect on the self diffusion of liquid alkanes is well predicted from our MD simulation results but not on the viscosity and thermal conductivity.

A study on landslide charateristics by using the shear strength of the interface of rock and soil (암과 흙 경계면에서의 전단강도를 이용한 산사태 특성 연구)

  • Lee, Su-Gon;Sun, Gun-Kyu;Lee, Chun-Young;Kim, Jae-Heun;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.606-613
    • /
    • 2004
  • One of the major forces that causes landslide is the amount of underground water resulted from rainfall and shear strength. As a result of close study on the landslide area affected by typoon Rusa it is observed that many landslides took place at the interface of rock and soil. Based on this observation that shear strength at the interface played a great role in landslide of the hilly area, two shear strengths were measured on different places, one at the interface between rocks and soil and the other just on soil. The two values thus derived were compared and used to review the safety factor for the hilly areas already collapsed. Back analysis was also used to calculate the ground water table according to the different rock types at the time when degradation happened.

  • PDF

Types and Geomorphic Development of Large Landslides in the Kokomeren River Basin, Kyrgyzstan (키르기스스탄 코코메렌강 유역의 대규모 산사태 유형과 지형 발달)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Large landslide is a type of mass movement that causes drastic landform changesin a short period, and it causes huge human and property damage over a large area. The purpose of this study is to categorize the types and characteristics of large landslides around the Kokomeren River basin, Kyrgyzstan and to discuss the geomorphic development after the large landslides. The topographic analysis about a total of 20 landslides documented collapsed volumes of 0.01 to 1.10 km3, height drops of 180 to 1,770 m, and runout distances of 1,200 to 5,400 m. Rock avalanche and rockslide are identified as major types of large-scale landslides in the study area. Rock avalanches can be divided into P-type, J-type, and S-type based on the features of slope failure and kinematic characteristics of rock debris. Landslide synchronistic landforms such as trimlines, transverse ridges, longitudinal ridges, levees, and hummocks are well developed in the rock avalanche. The pieces of evidence of landslide dam, landslide-dammed lake, and remnant outburst flood deposits are observed in the upstream and downstream where the rockslides occurred. The Ak-Kiol landslide dam is the best example of a geomorphic development due to lake spillover and the large landslides were likely to be triggered by huge paleo-seismic events.

Instability Analysis of Road Landfill Slope during Heavy Rainfall (호우시 도로성토사면의 사면불안정 분석)

  • Kim, Young-Muk;Park, Hyang-Keun;Chol, Mun-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2004
  • The study of seepage behavior is very important to slope stability of road landfill for heavy rainfall season. This study is done to propose more stable of road landfill based on analysis of seepage behavior and slope stability for some cases of road landfill. The selected sections of collapsed road landfill are most general case of road landfill, a case is landfill on the ground area and another case is on the slope area. The results of this study is summarized as follows. It is founded that the road landfill on the ground area is increased saturation region due to rainfall infiltration, and the seepage behavior of road landfill is solved by theory of unsaturated flow. The road landfill is more unstable due to rainfall infiltration at the slope surface, especially during heavy rainfall. The case of road landfill on the slope area is analyzed in consideration of slope surface infiltration, and it is founded that the slope instability is increased because of rainfall infiltration. The drain layer located on the original ground which made by more permeable materials could be good action of slope stability in the case of road landfill on the slope area.

  • PDF

A Study on the Causes for Declining of Business Area in the Old Downtown of Jeju-si - Focused on a Physical Situation of Land Use and Buildings - (제주시 구도심 상권의 쇠퇴 원인에 관한 연구 -토지이용 및 건축물 등의 물리적 현황을 중심으로-)

  • Cha, Ho-Cheol;Park, Chul-Min
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • The aim of this thesis is to present why the business district of old downtown in Jejusi collapsed and what sort of problems caused by that as collecting objective data, which help us to comprehend how the commercial zone has been decaying, on the physical state of the specific area near 'Sinheungro' and 'Chilsungro', which are main commercial sites in the downtown, and analysing it. Firstly It was revealed that most land investigated was property in which structure was able to built or poor land within $60m^2$. This was caused by increasing in land value and high density in space use so that the area did not develop. Secondly, In addition to be low density, most of buildings in 'Sinheungro' and 'Chilsungro' were so old and inefficient - the old buildings were abandoned without improving due to expensive rent and complicated property rights. Thirdly, According to the survey accomplished, major commercial facilities in the area have struggled with the continuous recession in their business. It was the inevitable result of not having an effective alliance with surrounding retail shops and a lack of a strategic action for satisfying consumers desire or adapting to new shopping patterns. Fourthly, Infrastructure in the site was ruining the beauty of the urban landscape as well as bringing on bad access to the inner city as not having improved enough. Furthermore, many administration departments which were in charge of each infrastructure existed. This was resulted from not considering unification between each infrastructure and regional characteristics of the local community.

Study on Danger Cut Slopes Distribution Area based on Inventory Data in Chungcheongdo (현황자료를 이용한 충청도 관내 위험절토사면 분포도 작성 연구)

  • Kim, Jin-Hwan;Koo, Ho-Bon;Rhee, Jong-Hyun;Yoon, Chun-Joo
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • KICT has been carrying out inventory research on the cut slopes of national roads. Inventory research results are basic data to cut slope management system. Inventory data are classified by general status, cut slope characteristics and inspector opinion. Inventory data are utilized to figure out dangerous slopes and decide survey ranking of detailed safety diagnostication. This paper drew the distribution area of dangerous cut slopes using inventory data in Chungcheongdo, and verified efficiency on distribution area of dangerous cut slopes by comparing occurrence frequency of real collapsed cut slopes.

A Case Study on Collapse Characteristics of Slope during Construction in the Chung-Cheong Area (시공 중 비탈면의 붕괴 특성에 대한 충청지역 사례연구)

  • Lee, Jundae;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.23-32
    • /
    • 2015
  • Most studies on slope collapsed have focused on collapse cases that occur on stabilized slopes in public use. Few studies have been conducted on the collapse characteristics of slopes that occur during construction before stabilization of the slope. In this study, detailed investigation was conducted for 79 sites where slope collapse occurred during or immediately after construction in the Chungcheong region, and their geometrical characteristics, collapse characteristics, design and reinforcement methods were evaluated. As a result of this analysis, it was found that the Chungbuk (CB) area was marked by plane-type collapse and surface layer collapse whereas the Chungnam (CN) area was marked by surface layer collapse or loss of sedimentary rocks. Furthermore, the major collapse factors of the Chungbuk region were joint alternations (53%) and weathering (25%), and the blocking due to multidirectional joints and foliation was also an influencing factor. In the phyllite area, too, the development of joints (55%) was a major factor, but the geological characteristics (36%) of sedimentary rocks such as faults and coaly shale also had considerable effects. Therefore, the geological, climatic, and environment characteristics were found to have affected the stability of slopes.