• Title/Summary/Keyword: Collapse load

Search Result 567, Processing Time 0.027 seconds

Axial Impact Collapse Analysis of Spot Welded Hat and Double-hat Shaped Section Members Using an Explicit Finite Element Code

  • Cha, Cheon-Seok;Kim, Young-Nam;Kim, Sun-Kyu;Im, Kwang-Hee;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.32-38
    • /
    • 2002
  • The purpose of this study is to analyze the collapse characteristics of widely used spot welded section members (hat and double hat section, nembers of vehicles) which possess the greatest energy absorbing capacity In an axial impact collapse. This study also suggests how the collapse load and deformation mode are obtained under impact. In the program system presented in this study, an explicit finite element code, LS-DY7A3D, is adopted for simulating complicated collapse behavior of the hat and double hat shaped section members with respect to section dimensions and spot weld pitches. Comparing the results with experiments, the simulation has been verified under a velocity of 7.19 m/sec (impact energy of 1034J)

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

Simplified Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames Using Collapse Spectrum (붕괴스펙트럼을 활용한 용접철골모멘트골조의 비선형 동적 연쇄붕괴 근사해석)

  • Lee, Cheol Ho;Kim, Seon Woong;Lee, Kyung Koo;Han, Kyu Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the behavior of column-removed double-span beams in welded steel moment frames and proposes a simplified nonlinear dynamic analysis method for the preliminary evaluation of progressive collapse potential. The nonlinear finite element analysis and the associated analytical study showed that the column gravity load and the beam span-to-depth ratio govern the maximum dynamic deformation demand of the double-span beams. Based on these results, the concept of a collapse spectrum, which describes the relationship between the gravity load parameter and the maximum chord rotation of the double-span beams, was newly proposed. A procedure for the application of the collapse spectrum to multi-story welded steel moment frames was then suggested. The inelastic dynamic finite element analysis results showed that the proposed method gives satisfactory prediction of the nonlinear progressive collapse behavior of welded steel moment frames.

Evaluation of Plastic Collapse Behavior for Multiple Cracked Structures (다중균열 구조물의 소성붕괴거동 평가)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Hwang, Seong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1813-1821
    • /
    • 2004
  • Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed.

Determination of collapse safety of shear wall-frame structures

  • Cengiz, Emel Yukselis;Saygun, Ahmet Isin
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.135-148
    • /
    • 2007
  • A new finite shear wall element model and a method for calculation of 3D multi-storied only shear walled or shear walled - framed structures using finite shear wall elements assumed ideal elasto - plastic material are developed. The collapse load of the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The shape functions over the element are determined as a cubic variation along the story height and a linear variation in horizontal direction because of the rigid behavior of the floor slab. In case shear walls are chosen as only one element in every floor, correct solutions are obtained by using this developed element. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of shear wall elements when vertical deformation parameter is exceeded ${\varepsilon}_e$, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determination of collapse safety, plastic displacements and plastic deformations are taken as additional unknowns. Rows and columns are added to the system stiffness matrix for additional unknowns.

A Study on the Quantatitive Voltage Stability Index Considering Load Voltage Characteristics (부하의 전압특성을 고려한 정량적 전압안정성 지표에 관한 연구)

  • Jeong, Joon-Mo;Lee, Bong-Yong;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.3-5
    • /
    • 1994
  • It is shown that the power flow considering the voltage characteristic of the composite load has some difference comparing with conventional load flow in this paper. When the load flow is used in a study of the static voltage stability, it is necessary to consider the voltage characteristic of load, since the composite load of a typical power system bas constant power, constant current, and constant impedance characteristic. The load is modeled to a polynomial form in here, and used in solving the load flow problem. In this way, the effect which the voltage characteristic of the load has on several voltage collapse proximity indicator based on sensitivities is compared with the conventional load flow, or with another load model having a different voltage characteristic. In this paper, the voltage collapse proximity indicator using the sensitivity of real power for transmission loss is also proposed, and compared with other indicators.

  • PDF

Progressive collapse resistance of flat slabs: modeling post-punching behavior

  • Mirzaeia, Yaser;Sasani, Mehrdad
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.351-375
    • /
    • 2013
  • Post-punching resistance of a flat slab can help redistribute the gravity loads and resist progressive collapse of a structure following initial damage. One important difficulty with accounting for the post-punching strength of a slab is the discontinuity that develops following punching shear. A numerical simulation technique is proposed here to model and evaluate post-punching resistance of flat slabs. It is demonstrated that the simulation results of punching shear and post-punching response of the model of a slab on a single column are in good agreement with corresponding experimental data. It is also shown that progressive collapse due to a column removal (explosion) can lead to punching failure over an adjacent column. Such failure can propagate throughout the structure leading to the progressive collapse of the structure. Through post-punching modeling of the slab and accounting for the associated discontinuity, it is also demonstrated that the presence of an adequate amount of integrity reinforcement can provide an alternative load path and help resist progressive collapse.

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.

DIRECT COMPUTATION OF MARGINAL OPERATING CONDITIONS FOR VOLTAGE COLLAPSE

  • Lee, Kyung-Jae;Jung, Tay-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.195-201
    • /
    • 1989
  • Voltage collapse is a serious concern to the electirc utility industry. It is common to associate steady-state stability with the ability of the transmission system to transport real power and to associate voltage collapse with the inability to provide reactive power at the necessary locations within the system. An algorithm to directly calculate the critical point of system voltage collapse was presented by the authors. The method (based on the ordinary power flow equations and explicit requirement of singularity of the Jacobian matrix) is basically one degree of freedom with proper load distribution factors. This paper suggests a modified algorithm to increase the degree of freedom, introducing the nonlinear programming technique. The objective function is a distance measure between the present operating point and the closest voltage collapse point. Knowledge of the distance and the most vulnarable bus from the voltage collapse point of view may be used as a useful index for the secure system operation.

  • PDF

A Theoretical Investigation on Shakedown Analysis of Framed Structures (강뼈대 구조물의 소성안정 해석에 관한 이론적 연구)

  • Lee, Jong-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.71-77
    • /
    • 1988
  • For the collapse of structures due to the variable repeated load, two types of collapse mechanisms, i.e., incremental collapse and alternating plasticity, exist. Under the similar variable repeated loading conditions there exists shakedown state in the structures. In shakedown state, the number of plastic hinges are not increased and all further loading will be resulted in the elastic moment changes. Namely, under the shakedown state, structures do not collapse. In this investigation, shakedown analysis are performed by composing new computer programs. Basic theories employed to compose the programs are as follows. 1. Newton-Raphson methods are added to the existing matrix method for the plastic analysis. 2. An effort to construct the stiffness of axial and bending springs attached at both ends of the member has been made. By using the programs developed, it is possible to anticipate the collapse mechanisms (Incremental collapse, alternating plasticity). Lastly for the verification of performance of the program, demonstration examples have been solved and the results are compared with other sources.

  • PDF