• Title/Summary/Keyword: Collapse Test

Search Result 484, Processing Time 0.044 seconds

Potential Hazard Classification of Aged Cored Fill Dams (노후 코어형 필댐의 잠재 위해성 유형 분류)

  • Park, DongSoon;Oh, Je-Heon
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.207-221
    • /
    • 2016
  • As greater numbers of fill dams and reservoirs become old, the risks of damage or embankment collapse increases. However, few studies have considered the deterioration and hazard classification of the internal core layers of fill dams. This study reports the results of geotechnical investigations of 13 earth-cored fill dams in Korea, based on no-water borehole drilling, Standard Penetration Test, and 2D and 3D electrical resistivity surveys along with in situ and laboratory testing. High-capacity no-water boring minimized core layer disturbance while providing continuous core sample recovery. The results allow the classification of potential hazards related to the existing core layers based on both visual inspection of the recovered samples and the results of engineering surveys and tests. Four types of potential hazard are classified: locally fluidized core with a high water content, rapid water inflow to a borehole, cores with granular materials, and relatively low stiffness of core. Among these, the locally fluidized core is the most critical hazard that requires remedial action because it is related to the potential internal flow path and internal erosion. The other three hazard types are of medium importance and require careful monitoring and regular inspection. Of note, there was no correlation between age and core deterioration. The results are expected to aid the safe management and potential upgrading of aging cored fill dams.

Structural Behavior of 3D Printed Concrete Specimens with Reinforcement (보강재가 있는 3D 프린팅 콘크리트의 구조거동)

  • Joh, Changbin;Lee, Jungwoo;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • This paper examines the structural behavior of 3D printed concrete specimens with focus on the bond between the layers. The tensile bond and flexural strengths were investigated experimentally and compared with those of specimens made by conventional mold casting. The test parameters were the time gap between printing layers and the reinforcement between vertical layers. The results showed the 3D printed specimens had voids between layers and confirmed the strength reduction due to printing time gap and the stress concentration caused by the voids. Most of the reduction in tensile bond strength between layers was due to the stress concentration at least up to certain printing time gap. Moreover, beyond a certain printing time gap (24hours), the additional reduction in tensile bond strength reached a level that could affect the structural behavior. The reinforcement between layers was helpful to increase the ductile behavior which is essential to prevent the sudden collapse of the structure. In addition, the reduction in flexural strength due to the stress concentration by the voids was observed and should be considered in the design of 3D printed wall structures against the lateral load.

A Study on the Analysis of Monitoring Settlement Considering the History of the Groundwater Level in the Dredged Landfill Area Affected by Algae (조류의 영향을 받는 준설매립지역에서 지하수위 이력을 고려한 계측침하 분석에 관한 연구)

  • Jang, Ji-Gun;Son, Su-Won;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.7
    • /
    • pp.13-23
    • /
    • 2021
  • If roads, bridges, buildings, etc. are built on the ground with soft clay or organic soil, there may be a lot of problems in geotechnical engineering such as settlement and stability due to the large settlement and lack of bearing capacity. In extreme cases, it may appear due to shear failure or collapse of the constructed structure, so a ground improvement method is indispensable to increase the strength of the ground and to suppress settlement. In this study, the settlement according to each groundwater level condition was analyzed using the measurement results for the groundwater level conditions, one of the important factors in predicting the settlement in dredged and reclaimed ground, and the groundwater level conditions applied to the settlement analysis were proposed by comparing it with settlement generated 5 years after construction. As a result of the analysis, it is judged that it is reasonable to apply the measured groundwater level during construction and the low water ordinary neap tide (L.W.O.N.T) during load application for the groundwater level in the settlement analysis. In addition, in the case of the dredged and reclaimed ground, it is estimated that the water pressure acting on the clay layer is nonlinear, as the result of the observations of the head of water at the observation points above and below the in-situ clay layer were different.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

A Development of Representative Condition Evaluation Standard for LNG Storage Tank Structures (LNG 저장탱크 구조물의 종합적 상태평가기준 개발)

  • Kim, Jung-Hoon;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.44-51
    • /
    • 2018
  • As the LNG storage tank is aged, if there is a crack in the outer wall concrete or corrosion of the reinforcing steel, there is a risk of a major accident such as collapse of the structure depending on the type and degree of damage. Since 2014, LNG storage tanks have undergone precise safety diagnosis and safety inspection has been carried out. The condition evaluation criteria for each component have been revised and applied in January 2016. The condition evaluation standard is to evaluate the status of storage tanks based on the appearance survey and material test results of LNG storage tanks and it is important for maintenance. In addition, the representative condition evaluation standard that shows the comprehensive state of each LNG storage tank is important in maintenance, but the related standard for LNG storage tank outer concrete is not available in Korea and abroad, and development of the condition evaluation standard is necessary. In this paper, we examined the structural characteristics of LNG storage tanks, analyzed the status of the condition evaluation criteria for each member, and developed a comprehensive status rating system by weighting the members. We used the AHP(Analytic Hierarchy Process) technique and developed a representative conditon evaluation criteria through surveys of professional organizations.

Preparation and Characterization of Gluten-free Muffins Using Fractured Tofu and Normal Corn Starch (파지두부와 옥수수전분을 이용한 글루텐 프리 머핀의 제조와 특성)

  • Lee, Yonghun;Jung, Gil-Young;Ko, Eun-Sol;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • This study investigated the effects of the mixing ratio of tofu paste and normal corn starch on the characteristics of gluten-free (GF) muffins. Soft wheat flour for wheat flour-based muffins (control) was replaced with the mixture of tofu paste and normal corn starch (NCS). The mixing ratios of tofu paste and NCS were 1:6.4 (S100), 1:5.1 (S80), 1:3.8 (S60), 1:2.6 (S40), 1:1.3 (S20), and 1:0 (S00), based on their total solid contents. GF muffins of S40-S100 developed the porous, sponge-like structure without crumb collapse. The weight and baking loss did not significantly differ in the control and GF muffins. By decreasing NCS in GF muffin batters, the moisture content, firmness, and crumb redness/yellowness of GF muffins increased, while their volume, specific volume, and crumb lightness decreased. Nevertheless, these characteristics (except for firmness) of S100 were much closer to those of the control. In the preference test, however, S60 (possessing lower attributes than S100 and S80) was most favored among GF muffins, and was very similar in all evaluations (except for appearance) to the control. Overall, the mixture of tofu paste and NCS would be a potential material to replace soft wheat flour in muffins.

Physical and sensory characteristics of brownies containing whey powder (유청 분말을 첨가한 브라우니의 품질 및 관능 특성)

  • Shin, Jang-Ho;Chae, Min Joo;Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.321-328
    • /
    • 2021
  • Brownies containing whey powder (WP) with different levels of substitutions for wheat flour (0, 10, 20, 30, and 40% substitution for WP 0, WP 10, WP 20, WP 30, and WP 40, respectively) were prepared, and their properties were compared. Regarding appearance, the collapse of the sample surface noticeably started from WP 30. The moisture content was higher in samples containing WP than in the control (WP 0), and the weight of the brownie increased with WP content. As the WP amount increased, both the total and specific volumes of the brownies decreased. Regarding texture, a higher amount of WP resulted in a decrease in hardness, whereas adhesiveness increased significantly. The antioxidant activity also increased with increasing WP amount (from 35.28 to 51.47%). Regarding sensory characteristics, 20 or 30% WP in brownies increased mouth-feel properties, taste, and overall preference. Based on the above results, WP could improve the quality of brownies, and a substitution level of 20% could be the most appropriate.

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT (ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템)

  • Son, Jae Deok;Lim, Sooho;Kim, Dong-In;Han, Giyoun;Ilyasov, Rustem;Yunusbaev, Ural;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

Experimental Evaluation of the Effect of Fine Contents on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes (하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대해 세립분 함량이 미치는 영향의 실험적 평가)

  • Kwak, Tae-Young;Lee, Seung-Hwan;Chung, Choong-Ki;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.93-105
    • /
    • 2021
  • In this study, we evaluated the effect of soil fine contents on the formation of underground cavities and ground cave-ins induced by damaged sewer pipes. Simulating the domestic rainfall conditions and ground conditions, model tests were performed under three different fine particle contents conditions (7.5%, 15%, and 25%). By repeating the groundwater supply and drainage twice, ground settlement and the amount of discharged soil were obtained. Also, digital images were taken at regular time intervals during the model tests, and internal displacement and deformation were measured using PIV technique. As the cycles were repeated, the soil with high fine content showed greater resistance to the formation of underground cavities. The ground cave-ins, identified by the collapse of the surface, occurred only when the fine particle content was 15%. It is presumed to be due to the suffusion phenomenon; further study was needed to investigate the effect of fine particle contents on the suffusion phenomenon and associated changes of soil strength.