• Title/Summary/Keyword: Coliform

Search Result 901, Processing Time 0.03 seconds

Bacteriological study on carcasses and environmental specimens from different stage of slaughter process (도축처리 단계별 도체 및 환경재료에 대한 미생물학적 분석)

  • 허정호;박영호;구정현;조명희;이주홍;임삼규
    • Korean Journal of Veterinary Service
    • /
    • v.21 no.2
    • /
    • pp.157-161
    • /
    • 1998
  • To get the information of sanitary develoment of beef and pork, we get the result of environmental specimens(slaughter house floors, sewage, etc) in laboratory. 1. After examination of bacterial infection on after-bleeding, after-dismemberment and final products at each stage of cattle slaughter process, we got log 3.80~7.48cfu/$\textrm{cm}^2$ of aerobic plate counts and log 2.60~5.23cfu/$\textrm{cm}^2$ of coliform counts or so from the carcasses after bleeding, but these count levels went down little bit after dismemberment but as we continued study to the final products, the count levels kept sililar in mumbers. 2. At the slaughter process of pigs, the aerobic plate counts and the coliform counts reached such high levels of log 5.59~8.80cfu/$\textrm{cm}^2$ and log 3.31~5.67cfu/$\textrm{cm}^2$, respectively, after bleeding, in general, these count diminished in a big way after scalding, but they increased just little bit from dismemberment to final products. And there were few differences in the contamination levels on the final products no matter what seasonal contaminations after bleeding. 3. Test revealed very low levels of cell counts both on the aerobic plate counts of washing water and in the coliform counts, the former was log 1.00~2.69cfu/$\textrm{cm}^2$ and the later was log 3.30~5.67cfu/$\textrm{cm}^2$, but the contamination levels on the beds of transfering vehicles for carcasses were very high as followes : the aerobic counts was log 4.23~7.20cfu/$\textrm{cm}^2$ and coliform counts was log 2.86~5.20cfu/$\textrm{cm}^2$. 4. Study showed the aeroboc plate counts and the coliform counts get to the highest levels in summer, the second highest one is in fall, the third in spring, lowest in winter. Resulting from the test results proven above we reached this kind of conclusion the bacterial contaminations on eatable carcasses were upto hygienic treatment of carcasses and cleaniness of transfering vehicles at the final stop of slaughter processes rather than upto at any stage of slaughter processes. Therefore we have got to establish alternatives immediately to develo sanitary quality of meat and pork.

  • PDF

Evaluation of Dry Rehydratable Film Method for Enumeration of Microorganisms in Korean Traditional Foods (한국 전통식품 중 미생물 분석을 위한 건조필름법 평가)

  • Kim Kwan-Sik;Bae Eun-Kyung;Ha Sang Do;Park Young Seo;Mok Chul Kyoon;Hong Kwan Pyo;Kim Sang Phil;Park Jiyong
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.4
    • /
    • pp.209-216
    • /
    • 2004
  • Dry rehydratable film methods were compared to conventional methods for the enumeration of microorganisms in Korean traditional foods. Kimchi, doenjang, kochujang, kanjang, takju, sujeongkwa and sikhe were used as Korean traditional foods. $Petrifilm^{TM}$ aerobic count plate, $Petrifilm^{TM}$ coliform count plate, $Petrifilm^{TM}$ E. coli/coliform count plate, $Petrifilm^{TM}$ yeast and mold count plate and $Petrifilm^{TM}$ staph express count plate were compared to plate count agar, most probable number (MPN) for coliform, MPN for E. coli, potato dextrose agar and coagulase test, respectively. Regression analysis indicated that correlation coefficient values were 0.974-0.998, 0.913-0.995, 0.955-0.978, 0.968-0.986 and 0.998-0.999 for total aerobic bacteria, yeast and mold, coliform, E. coli and S. aureus, respectively. There were no significant differences between two methods, suggesting that $Petrifilm^{TM}$ plates can be used as an alternative to conventional method for the determination of microorganisms in Korean traditional foods.

Growth Performance, Meat Quality and Caecal Coliform Bacteria Count of Broiler Chicks Fed Diet with Green Tea Extract

  • Erener, Guray;Ocak, Nuh;Altop, Aydin;Cankaya, Soner;Aksoy, Hasan Murat;Ozturk, Ergin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1128-1135
    • /
    • 2011
  • This study was conducted to investigate the effect of dietary green tea extract (GTE) on the performance, carcass and gastrointestinal tract (gut) traits, caecal coliform bacteria count, and pH and color (CIE $L^*$, $a^*$, and $b^*$) values of the breast muscle in broilers. A total number of 600 day-old broilers (Ross 308) was allocated to three treatments with four replicates containing 50 (25 males and 25 females) birds. The dietary treatments consisted of the basal diet as the control (0GTE) and diets with GTE at 0.1 (0.1GTE) or 0.2 (0.2GTE) g/kg. Body weights and the feed intake of broilers were measured at 1, 21 and 42 days, the feed intake was measured for different periods and the feed conversion ratio was calculated accordingly. At 42 day four birds per replicate were slaughtered for the determination of carcass and organ weights, caecal coliform bacteria count, and also quality of the breast muscle. The dietary GTE increased the body weight, feed efficiency, carcass weight and dressing percentage and decreased caecal coliform bacteria count of broilers (p<0.05). The 0GTE broilers consumed (p<0.01) less feed than the 0.1GTE birds in the entire experimental period. The relative abdominal fat weight and gut length of broilers in the 0.2GTE were tended to be lower (p<0.07) than those in the 0GTE group. The breast meat from 0.1GTE birds had a lower pH value when compared to that from 0GTE birds. The 0.1GTE broilers had lighter breast meat than 0GTE and 0.2GTE birds. The dietary GTE increased $a^*$ and $b^*$ values of the breast meat. Thus this product appeared to have a measurable impact on CIE color values of the breast meat in broilers. The results of the present study may indicate that the improved production results in the group with added GTE are directly connected with physiological mechanisms such as the regulation of the caecal micro-flora.

Determination of Microbial Contamination in the Process of Rice Rolled in Dried Laver and Improvement of Shelf-life by Gamma Irradiation (김밥 제조공정에서의 미생물 오염도 평가 및 감마선 조사를 이용한 김밥의 보존안정성 향상)

  • 김동호;송현파;김재경;김정옥;이현자;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.991-996
    • /
    • 2003
  • Determination of regional microbial contamination in the process of rice rolled in dried laver (Kimbab) and effects of gamma irradiation on the improvement of hygienic quality and shelf stability were investigated. Total aerobic bacterial distribution of raw materials of Kimbab were; 10$^{6}$ ∼10$^{7}$ CFU/g in dried laver, 10$^3$ CFU/g in cucumber and below 10 CFU/g in steamed rice, ham, fried egg, and salted radish. Total coliform bacteria were 10$^3$ CFU/g in dried laver and detected below detection limit (10 CFU/g) in other raw materials. And it was arithmetically calculated that the levels of total aerobic bacteria and coliform bacteria in Kimbab does not exceed 10$^{5}$ CFU/g and 10$^1$ CFU/g under the aseptic process, respectively. However, microbial contamination levels in just prepared Kimbab in a market were about 10$^{6}$ CFU/g of total aerobic and coliform bacteria. Therefore, it was considered that microbial contamination of Kimbab is mainly originated from environmental uptake during the preparation. The representative media for putrefying bacterial growth were steamed rice. Coliform bacteria were mainly increased in ham and fried egg during storage. The bacteria in dried laver were radio-resistant and survived at 3 kGy of gamma irradiation. Coliform bacteria on EMB agar plate were eliminated at the dose of 2 kGy. The sensory acceptability of 2 kGy irradiated Kimbab was stable and the Kimbab can be preserved for 24 hour at 15$^{\circ}C$. Therefore, it was considered that optimal irradiation dose for radicidation of Kimbab was 2 kGy.

Impact of Rainfall Events on the Bacteriological Water Quality of the Shellfish Growing Area in Korea (패류 양식장의 세균학적 수질에 미치는 강우의 영향)

  • Lee, Tae-Seek;Oh, Eun-Gyoung;Yu, Hyeun-Duck;Ha, Kwang-Soo;Yu, Hong-Sik;Byun, Han-Seok;Kim, Ji-Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.406-414
    • /
    • 2010
  • The impact of rainfall events on the sanitary indicator bacteria density of the shellfish-growing waters in Geoje Bay and Jaran Bay in Korea was investigated. The shellfish-growing area in Geoje Bay, which is a nearly closed basin, was not affected significantly, except near the stream mouth after 11.5 mm of rainfall in 1 day. However, most of the shellfish-growing water in the bay was polluted by fecal coliform bacteria after rain as heavy as 43.0 mm, and the levels of fecal indicator bacteria in some of the sea near the coast did not recover completely until 24 hours after the rainfall. By contrast, in Jaran Bay, which has no significant pollution source in the drainage area, although 9.3-490 MPN/100 mL of fecal coliform bacteria were detected near the stream mouth after rainfall of 33.5 and 81.0 mm, a very low level of the indicator bacteria was detected in the designated shellfish-growing area. During the investigation, the correlations between the sanitary indicator bacteria density and physical parameters, such as salinity and turbidity, were evaluated. Both the total coliform and fecal coliform densities were inversely correlated with salinity. Turbidity was positively correlated with the indicator bacteria density. The survey results suggest that for more efficient management of the shellfish-growing areas located in coastal areas, such as shellfish harvesting after rainfall, a detailed investigation of the effects of rainfall on the bacterial water quality in each growing area is needed.

Simulating Bacterial Dispersion from Coastal Sewage Outfalls Using the QUICKEST Scheme (QUICKEST법을 사용한 연안해역에서 박테리아 확산의 수치모의)

  • Kang Yun Ho;Lee Moon Ock
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.20-30
    • /
    • 1999
  • To improve water quality particularly for sea bathers along the Fylde coastal zone near Blackpool, North West England, waste water from a sewage outfall is studied using a mathematical model. The explicit second order accurate central scheme and the third order accurate QUICKEST scheme are used to represent the diffusion terms and the advection terms of the advective-diffusion equation, respectively. Hydrodynamic model is run for a coarse and fine grid, of 1km and 200m, respectively, obtaining good agreement with measured data. Water quality model is then used to predict faecal coliform levels in the region for four different scenarios, including discharges from: - (i) Fleetwood outfall, (ii)River Ribble for summer condition, (iii)River Ribble for winter condition, and (iv)combined sewer overflows for the Blackpool and Fleetwood communities. Main findings from the simulations are:- (i) Fleetwood outfall has a negligible impact on the beaches with respect to pathogen levels; (ii) Discharge from River Ribble for both summer and winter conditions is predicted in the range of coliform levels 10 -500 counts/100ml along the beach at Lytham St. Annes; and (iii) The CSO effluent discharges are predicted not to advect out into offshore by stronger tidal currents.

  • PDF

Evaluation of the Influence of Inland Pollution Sources on Shellfish Growing Areas after Rainfall Events in Geoje Bay, Korea (강우에 따른 거제만해역 육상오염원의 영향평가)

  • Ha, Kwang-Soo;Yoo, Hyun-Duk;Shim, Kil-Bo;Kim, Ji-Hoe;Lee, Tae-Seek;Kim, Poong-Ho;Ju, Ja-Yeon;Lee, Hee-Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.612-621
    • /
    • 2011
  • The influences of inland pollution sources because of rainfall events on the bacteriological water quality in Geoje Bay, a major shellfish production area in Korea, were investigated. The sanitary status of sea water and shellfish after rainfall events was also evaluated. The flow rates of 13 streams around Geoje Bay showed 6 to 7-fold increases after 15 to 21 mm of rainfall. Peak pollution was observed in the Naegan Stream, the Gandeok Stream and the Seojeong Stream. The calculated impact area of inland pollution sources was 3.1 $km^2$ immediately after 15 mm of rainfall and expanded to 3.5 $km^2$ after 24 hours. These calculations of impacted area matched results from fecal coliform analyses with sea water. The distance between the major pollution source in the bay (the Gandeok Stream) and the station with the worst bacteriological water quality immediately after 15 mm of rainfall, which was below the Korean standard, was 0.8 km in a straight line; this distance increased to 2.0 km after a period of 24 hours. The area impacted by inland pollution sources after a 15 mm rainfall event was wider than after a 21 mm rainfall. Although the flow rate from inland pollution sources was higher, the concentration of fecal coliform in the discharged water was lower after higher rainfall events. These observations corresponded with the results of fecal coliform analyses with sea water samples. According to the evaluation of the influences of inland pollution sources and fecal coliform analyses on sea water and shellfish samples in Geoje Bay, pollutants from inland sources did not reach the boundary line of the shellfish growing area after rainfall events of 15 or 22 mm. The bacteriological water quality of the shellfish growing area in Geoje Bay met the Korean standard and US NSSP requirements for approved shellfish growing areas.

Inhibitory Effect on the Growth of Intestinal Pathogenic Bacteria by Kimchi Fermentation (김치 발효에 의한 장내병원균의 생육저해효과)

  • Kang, Chang-Hoon;Chung, Kyung-Oan;Ha, Duk-Mo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.480-486
    • /
    • 2002
  • Six strains of intestinal pathogenic bacteria were inoculated into kimchi at the preparation time, and the influence of kimchi fermentation on the growth of these pathogenic bacteria was investigated. The population of coliform bacteria in the kimchi raw materials, and its changes in the kimchi sample during fermentation were also determined. Among the raw materials, highest populations of coliform bacteria were detected in ginger and green onion, followed by Chinese cabbage, red pepper, and garlic. Populations of pathogenic bacteria (inoculated strains) and coliform bacteria in kimchi decreased as pH decreased with fermentation. Coliform bacteria disappeared at pH 3.9 in Chinese cabbage kimchi samples. Clostridium perfringens ATCC 13124, Listeria monocytogenes ATCC 19111, Salmonella typhimurium KCTC 1625, Staphylococcus aureus KCTC 1621, Vibrio parahamolyticus ATCC 27519, and Escherichia coli O157 H:7 ATCC 43894 were not detected at pH values less than 4.1, 3.7, 3.8, 3.8, 3.7, and 3.7 in Chinese cabbage kimchi, and at pH values less than 4.5, 4.0, 4.2, 4.2, 4.2 and 4.1 in mustard leaf kimchi, respectively. The juice of mustard leaf and allyl isothiocyanate exhibited high antimicrobial activities on the pathogenic bacteria, whereas the lowest on lactic acid bacteria. These results indicated that fermentation is useful to improve the safety of kimchi, and the antimicrobial effect of mustard leaf kimchi is mainly due to the major pungent compound of mustard leaf, allyl isothiocyanate.

Investigation of Microbial Safety and Correlations Between the Level of Sanitary Indicator Bacteria and the Detection Ratio of Pathogens in Agricultural Water (농업용수의 미생물학적 안전성 조사 및 위생지표세균 농도와 병원성미생물 검출률과의 상관관계 분석)

  • Hwang, Injun;Lee, Tae Kwon;Park, Daesoo;Kim, Eunsun;Choi, Song-Yi;Hyun, Jeong-Eun;Rajalingam, Nagendran;Kim, Se-Ri;Cho, Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.248-259
    • /
    • 2021
  • BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh produce-related outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 - 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%- site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.

Optimum conditions for artificial neural networks to simulate indicator bacteria concentrations for river system (하천의 지표 미생물 모의를 위한 인공신경망 최적화)

  • Bae, Hun Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1053-1060
    • /
    • 2021
  • Current water quality monitoring systems in Korea carried based on in-situ grab sample analysis. It is difficult to improve the current water quality monitoring system, i.e. shorter sampling period or increasing sampling points, because the current systems are both cost- and labor-intensive. One possible way to improve the current water quality monitoring system is to adopt a modeling approach. In this study, a modeling technique was introduced to support the current water quality monitoring system, and an artificial neural network model, the computational tool which mimics the biological processes of human brain, was applied to predict water quality of the river. The approach tried to predict concentrations of Total coliform at the outlet of the river and this showed, somewhat, poor estimations since concentrations of Total coliform were rapidly fluctuated. The approach, however, could forecast whether concentrations of Total coliform would exceed the water quality standard or not. As results, modeling approaches is expected to assist the current water quality monitoring system if the approach is applied to judge whether water quality factors could exceed the water quality standards or not and this would help proper water resource managements.