• Title/Summary/Keyword: Cold weather concrete

Search Result 170, Processing Time 0.036 seconds

Using the maturity method in quality control of cold weather concrete (적산온도에 의한 동절기 콘크리트의 품질관리)

  • Lee, Joon-Gu;Park, Kwang-Su;Cho, Young-Kweon;Kim, Meyong-Won;Kim, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.245-248
    • /
    • 2004
  • The prediction of the strength of cold weather concrete and the analysis of the insulating material effect were performed to apply the prediction function with maturity concept for quality control of them in this study. The several results driven from above processes were summarized as followings. First, the difference between the temperature of cylinder covered with insulating materials and that of cylinder without them was $4.5\~6.0^{\circ}C$. Second, the maturity of concrete was suggested to be keep higher than $96\~115^{\circ}C{\cdot}D$ until at least 7-day and the temperature of fresh concrete was suggested to be keep above $10^{\circ}C$ directly after set.

  • PDF

Application of Cold Weather Concreting with Accelerator for Freeze Protection to Full Scale Structures (내한촉진제를 사용한 한중콘크리트의 실구조물 적용에 관한 연구)

  • Kim, Young-Jin;Baek, Tae-Ryong;Lee, Sang-Soo;Won, Chul;Kim, Dong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.254-262
    • /
    • 2003
  • In this study, the results of applying cold weather concreting mixed with Accelerator for Freeze Protection(AFP) to full scale structures are presented. Since the determination of W/C and amount of AFP significantly have an effect on strength gain and protection of frost damage in early, a full investigation is needed to determine these values at stage of nux design. The flowability of fresh cold weather concreting with AFP was similar to the same W/C. Lower loss of workability and initial slump flow of concrete using superplasticizer of polycarboxylic ester than that of melamine sulphonate showed that polycarboxylic ester was more effective on elapsed time. Temperature histories of specimens located in insulation boxes at the site was similar to that of structures. Thus, it is cleared that simple adiabatic curing method is effective for evaluating in-place concrete strength than specimens cured by sealing method. The investigation results of development of compressive strength of cold weather concreting included AFP with curing methods by logistic curves indicated that AFP can be effective to gain strength at lower temperature than normal curing temperature. In field testing, vinyl sheets were placed over the concrete sections and AFP enabled concrete to gain $5N/{mm}^2$ to protect frost damage in early ages and specified compressive strength of concrete at 28 days under average temperature of $-2^{\circ}C$ (lowest temperature was $-12^{\circ}C$) during site application.

Characteristics of Concrete Strength Development Based on Cement Type and Curing Temperature in Cold-Weather Conditions (한중조건에서 시멘트 종류 및 양생온도별 콘크리트의 강도 발현 특성)

  • Han, Jun-Hui;Lim, Gun-Su;Lee, Hyeon-Jik;Park, Jae-Woong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.153-154
    • /
    • 2023
  • In this study, analyzed the difference in compressive strength of concrete under cold conditions, using the 28-day standard curing compressive strength as a reference and examining variations based on cement types and curing temperatures. The results showed that the strength difference based on curing temperatures reached up to 9MPa at 0℃. However, as the curing period progressed, the difference in strength due to curing temperature gradually diminished. These findings are anticipated to be valuable for concrete mixing and quality control in cold weather conditions.

  • PDF

Application of Curing Method Using the Heating Cable for Cold Weather Concreting (매입형 열선에 의한 한중콘크리트의 보양방법 적용에 관한 연구)

  • 김형래;이정철;김찬수;이명진;김봉주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.769-774
    • /
    • 2001
  • The purpose of this study is to analyze the curing effect of heating cable for concreting in cold weather. An experiment was conducted to evaluate the temperature history of concrete structures cured with embedded heating cables. Results are as follows : In comparison with the non-heating case, applying of heating cable resulted in the rise of temperature in the range of $10^{\circ}C$. In order to get successful results, the optimal pitch length for the embedded heating cables ranged from 20cm to 25cm. When working with the existing curing methods, applying this heating cable would be more effective in concrete curing. Finally, a formula and process was suggested to predict the Internal temperature history of concrete structures under the various curing conditions.

  • PDF

Application of Insulation Curing Method with Double Bubble Sheets Subjected to Cold Weather (이중 버블시트를 이용한 단열양생공법의 한중시공 적용 사례)

  • Hong, Seak-Min;Lee, Chung-Sub;Kim, Jong;Jeon, Chung-Kun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1001-1004
    • /
    • 2008
  • This study reviewed the results of utilization of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double layer bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and $10^{\circ}C$ even in case outside temperature drops $10^{\circ}C$ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than $6^{\circ}C$, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Fundamental Properties of Magnesia-Prosphate Composite Considering Mix Conditions and Curing Temperature (배합조건 및 양생온도에 따른 마그네시아 인산염 복합체의 기초물성 평가)

  • Cho, Hyun Woo;Kang, Su Tae;Shin, Hyun Seop;Lee, Jang Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.163-170
    • /
    • 2012
  • With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weathers. And it can be hardened more quickly if the field temperature is properly compensated by heating. Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. While the addition of a large amount of anti-freeze agent is effective to prevent concrete from freezing and accelerates cement hydration resulting in shortening the setting time and enhancing the initial strength, it induces problems in long-term strength growth. Also, it is not economically feasible because most anti-freeze agents are mainly composed of chlorides. Recent studies reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperatures, which can be used as an alternative of cold weather concrete for cold weathers and very cold places. As a preliminary study, to obtain the material properties, mortar specimens with different mixture proportions of magnesia-phosphate composites were manufactured and series of experiments were conducted varying the curing temperature. From the experimental results, an appropriate mixture design for cold weathers and very cold places is suggested.

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

AN EXPERIMENTAL INVESTIGATION ON MINIMUM COMPRESSIVE STRENGTH OF EARLY AGE CONCRETE TO PREVENT FROST DAMAGE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Koh, Kyung-Taek;Park, Chun-Jin;Ryu, Gum-Sung;Park, Jung-Jun;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.393-400
    • /
    • 2013
  • Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.