• 제목/요약/키워드: Cold forming method

검색결과 116건 처리시간 0.02초

알루미늄 합금 볼트의 제조 공정 설계 (Manufacturing Process Design of Aluminum Alloy Bolt)

  • 김지환;채수원;한승상;손요헌
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.63-68
    • /
    • 2010
  • The use of aluminum alloy parts in the automotive industry has been increasing recently due to its low weight compared with steel to improve fuel efficiency. Companies in the auto parts' manufacturing sector are expected to meet the government's strict environmental regulations. In this study, manufacturing process of aluminum alloy bolt has been designed from forming to heat treatment. Bolt forming process is composed of cold forging for body and rolling for thread. In this study only cold forging process is considered by employing the finite element method. In the cold forging process, preform shape was designed and damage value was considered for die design. Two steps of forging process has been developed by the simulation and a prototype was manugactured accordingly. As a final process, solution heat treatment and aging process was employed. A final prototype was found to meet the required specifications of tensile strength and dimension.

Design of Induction Heating Coil for Automatic Hull Forming System

  • Ryu, Hyun-su
    • 해양환경안전학회지
    • /
    • 제24권3호
    • /
    • pp.360-366
    • /
    • 2018
  • In shipyards hull forming is performed by the line heating method using a gas torch and by cold treatment using a roll-press. However, this forming process has some issues, such as difficulties in controlling and accurately estimating the amount of the heat input, as well as a harsh working environment due to exposure to loud noises and air pollution. The induction heating method, which is introduced in this paper, exhibits good control and allows for the estimation of precise heat input. Also, workers can carry out the induction heating in a comfortable working environment. In this research, the induction heating simulation, which consists of electro-magnetic, heat transfer and thermal elasto-plastic analysis, was developed and modified through induction heating experiments. Finally, the effective heating coil was designed for the automatic hull forming system based on the results of induction heating simulation. For the purposes of a future study, if an algorithm to obtain optimal working conditions is developed, automatic systems for hull forming can then be constructed.

유한요소법을 이용한 자동차용 브레이크 파이프의 성형에 관한 연구 (A Study on Forming for Brake Pipe of Automobiles using Finite Element Method)

  • 민병현;제원수;예상돈
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.47-49
    • /
    • 2008
  • The brake pipe is important part in automobile. The brake pipe have to prevent crack, fracture and defects for braking in safety. Especially, shape of ends of pipe has influence on ability of brake. Based on the procedure of process design, in this paper, the forming operation is designed by finite element method. Design variable and response value was selected shape of die and damage factor. To improve die that performed FEM and compared results of two types of die.

  • PDF

1-Piece 알루미늄 도어 인너 냉간-열간 복합 성형공정 개발 (Development of the Hybrid Cold-Hot Stamping Process for the 1-Piece Aluminum Door Inner Part)

  • 남성우;배기현
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.242-246
    • /
    • 2021
  • Aluminum alloy sheet is being applied to automobiles continuously for the purpose of reducing car body weight. However, due to low formability, there's a limit to application of products with a deep forming depth such as door inner parts. Therefore, the difficult-to-form parts are mainly segmented formed then joined together, which is also disadvantageous as it increases the cost of manufacturing. This study proposes a hybrid cold-hot stamping method for the 1-piece door inner part to reduce cost. To design the stamping process, numerical simulation method is established by using the temperature-dependent mechanical properties of AA6016. The formability according to the hybrid cold-hot stamping method is evaluated using numerical analysis. The suitability of the proposed stamping method is then verified through the stamping tryout.

2단계공정을 이용한 헬리컬기어 압출에 관한 연구 (A Study on Extrusion of Helical Gears by a Two-step Process)

  • 정성윤;박준홍;김철;김창호;최재찬;최상호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 제7회 단조 심포지엄
    • /
    • pp.85-91
    • /
    • 2002
  • Of all the many types of machine elements which exist today, gears are among the most commonly used. Many researches have been done to manufacture helical gears by cold forging and extrusion. Although cold forging and extrusion were applied to some bevel, spur, and helical gears, problems in connection with reducing forming load and tool life still make it difficult for the related methods to be commercialized. In this study, focusing on reducing load in forming helical gears, extrusion of helical gears by a two-step process is proposed. The process is composed of an extrusion step of spur gears used as preform and a torsion step of the preform to make helical gears. Upper-bound analysis for the two-step process is performed and compared with results of experiments. The newly proposed method can be used as an advanced forming technique to remarkably reduce the forming load and replace the conventional forming process of helical gears.

  • PDF

2단계공정을 이용한 헬리컬기어 압출에 관한 연구 (A Study on Extrusion of Helical Gears by a Two-step Process)

  • 정성윤;박준홍;김철;김창호;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.824-828
    • /
    • 2002
  • Of all the many types of machine elements which exist today, gears are among the most commonly used. Many researches have been done to manufacture helical gears by cold forging and extrusion. Although cold forging and extrusion were applied to some bevel, spur, and helical gears, problems in connection with reducing forming load and tool life still make it difficult for the related methods to be commercialized. In this study, focusing on reducing load in forming helical gears, extrusion of helical gears by a two-step process is proposed. The process is composed of an extrusion step of spur gears used as preform and a torsion step of the preform to make helical gears. Upper-bound analysis for the two-step process is performed and compared with results of experiments. The newly proposed method can be used as an advanced forming technique to remarkably reduce the forming load and replace the conventional forming process of helical gears.

  • PDF

반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화 (Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method)

  • 이형욱;이근안;최석우;윤덕재;임성주;이용신
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

상하 비대칭 롤러를 이용한 이중곡면 성형의 변형특성에 대한 연구 (Deformation Characteristics of Compound Curved Plate Bending by Asymmetric Rollers)

  • 최양렬;신종계
    • 한국해양공학회지
    • /
    • 제16권2호
    • /
    • pp.38-43
    • /
    • 2002
  • Die-less forming is a cold forming process which is to bend thick flat plates into compound curved plates using two asymmetric rollers. This forming method has several advantages compared with line heating which is widely used to fabricate compound curved pieces in shipyards. The die-less forming, however, has scarcely been studied. Even the deformation mechanism in this forming process has not been understood clearly. So, in this paper, the deformation characteristics of die-less forming is investigated analytically and numerically. for the analytic investigation, slab method based on equilibrium equation is applied. And the mechanism of curvature generation is derived for the asymmetry in roller applied. And three dimensional numerical analyses are performed with realistic modeling of interactions between the rollers and work-piece using finite element program, ABAQUS. It is shown that curvature generation is mainly due to the difference of normal positive strain distribution between the top and bottom surface of the work-piece. And a convex-type curved plate is formed if the center region of the work-piece is rolled with asymmetric rollers of which the lower is larger than the upper in diameter.

냉간단조용 비조질강 및 성형품의 미세조직과 기계적 특성분석 (Characterization of Microstructure and Mechanical Properties of Micro-alloyed Cold Forging Steel and Product)

  • 서동우;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.409-412
    • /
    • 2004
  • Microstructures and mechanical properties of microalloyed cold forging steel and cold forged prototype automobile part are characterized. The work hardening according to the increase of plastic strain plays a major role in increasing the tensile strength of microalloyed cold forging steel during cold forming. On the other hand, inhomogeneous distribution of plastic strain causes variations in microstructure and mechanical properties. The relation between inhomogeneous distribution of plastic strain and variations in microstructure and mechanical properties is discussed. The variation of mechanical property in cold forged automobile part is analyzed using quantitative evaluation of plastic strain from finite element method.

  • PDF

마멸모델을 이용한 금형마멸 예측에 관한 연구 (A Study on the Prediction of Die Wear using Wear Model)

  • 박종남
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.28-33
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The mechanisms of wear are consisted of adhesion, abrasion, erosion and so on. Die wear affects the tolerances of formed parts, metal flow, and costs of process. The only way to control these failures is to develop a prediction method on die wear suitable in the design state in order to optimize the process. The wear system is used to analyse 'operating variables' and 'system structure'. In this study, with AISI D2, AISI 1020, AISI 304SS materials, a series of the wear experiments of pin-on-disk type to obtain the wear coefficients from Archard's wear model and the upsetting processes are carried out to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes are performed by the rigid-plastic finite element method. The result of the analysis is used to investigate the die wear the processes, and the analysis simulated die wear profiles are compared with the experimental measured die wear profiles.

  • PDF