• 제목/요약/키워드: Cold Water Pipe

검색결과 45건 처리시간 0.029초

소형 이동식 모듈주택의 벽면에 냉수배관 매설에 의한 냉방온도 특성 (Characteristics of Cooling Temperature of Cold Water Pipes Buried in the Wall of a Small Mobile Modular House)

  • 조동현
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.110-117
    • /
    • 2022
  • A chiller cooler absorbs the thermal energy of water to generate cold water and supplies the generated cold water to a cold water pipe buried in the wall of a small mobile modular house to greatly increase the cooling area. An attempt was made to reduce the required cooling time significantly. A small chiller cooler suitable for the cooling load of a small mobile modular house with an area less than 3.3 m2 was employed. When cooling is done during summer using a chiller cooler installed outdoors, heat absorption energy loss occurs in the cold water pipe owing to the high temperature. To address this, a study was conducted to reduce the endothermic energy loss significantly. As the mass flow rate of the cold water flowing inside the cold water pipe increased, the temperature decrease gradient of the cold water increased. From the start of the cooling operation, the air temperature of the small mobile modular house decreased linearly in proportion to the operation time. Furthermore, the temperature of the air inside the small mobile modular house decreased in proportion to the increase in the flow of water inside the cold water pipe.

해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토 (Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC)

  • 정훈;허균영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF

산간 계곡의 지하배수관 설치에 따른 벼 냉수피해 사례분석 (A Case Study on Cold Water Damage to Rice by Installation of Underground Drain Pipe at a Mountainous Valley)

  • 심교문;정명표;김용석;최인태
    • 한국농림기상학회지
    • /
    • 제17권3호
    • /
    • pp.270-274
    • /
    • 2015
  • 산간지역의 계곡 물길의 매립과 지하배수관의 설치에 따른 인근 논에서 벼 냉수해에 대한 민원이 제기되어 벼 냉수해와 지하배수관 설치의 연관성 유무을 파악하기 위해서 현장조사 및 분석을 실시하였다. 결론적으로 지하배수관 설치로 인하여 계곡물의 온도가 지하배수관 설치 전보다 $0.5{\sim}4.5^{\circ}C$ 범위로 낮아진 것으로 분석되었고, 이 냉수를 농업용수로 관개한 하류쪽 논에서는 벼 냉수해가 발생할 가능성이 매우 높았을 것으로 판단되었다. 따라서, 적절한 수온상승 조치를 취하지 않으면 냉수해로 인하여 정상적인 수확이 불가능할 것으로 평가되었다.

A study of internal wave influence on OTEC systems

  • Shi, Shan;Kurup, Nishu V.;Halkyard, John;Jiang, Lei
    • Ocean Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.309-325
    • /
    • 2013
  • Ocean Thermal Energy Conversion (OTEC) systems utilize the temperature difference between the surface water and deep ocean water to generate electrical energy. In addition to ocean surface waves, wind and current, in certain locations like the Andaman Sea, Sulu Sea and the South China Sea the presence of strong internal waves may become a concern in floating OTEC system design. The current paper focuses on studying the dependence of the CWP hydrodynamic drag on relative velocity of the flow around the pipe, the effect of drag amplification due to vortex induced vibrations and the influence of internal waves on the floating semi and the cold water pipe integrated OTEC system. Two CWP sizes are modeled; the 4m diameter pipe represents a small scale prototype and the 10m diameter pipe represents a full commercial size CWP. are considered in the study.

Effect of Twisted - Tape Tubulators on Heat Transfer and Flow Friction inside a Double Pipe Heat Exchanger

  • Phitakwinai, Sutida;Nilnont, Wanich;Thawichsri, Kosart
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.124-131
    • /
    • 2015
  • Computational fluid dynamics (CFD) has been employed for the Heat exchanger efficiency of a counter flow heat exchanger. The Heat exchanger efficiency has been assessed by considering the computed Nusselt number and flow friction characteristics in the double pipes heat exchanger equipped with two types twisted-tapes: (1) single clockwise direction and (2) alternate clockwise and counterclockwise direction. Cold and hot water are used as working fluids in shell and tube side, respectively. Hot and cold water inlet mass flow rates ranging are between 0.04 and 0.25 kg/s, and 0.166 kg/s, respectively. The inlet hot and cold water temperatures are 54 and $30^{\circ}C$, respectively. The results obtained from the tube with twisted-tapes insert are compared with plain tube. Nusselt number and friction factor obtained by CFD simulations were compared with correlations available in the literature. The numerical results were found in good agreement with the results reported in literature.

관망해석을 통한 주거용 건축물의 급수.급탕 헤더시스템 설계 방안에 관한 연구 (A Study on the Design Method of Cold & Hot Water Manifold System for Residential Buildings through the Piping Network Analysis)

  • 차민철;석호태;김동우
    • 한국주거학회논문집
    • /
    • 제19권5호
    • /
    • pp.111-120
    • /
    • 2008
  • The aim of this study is to present the design methods about manifold location being installed and size and to draw out the proper piping size as comparing the fluctuation of discharge with manifold size and residence size through the piping network analysis, when using the same faucet in accordance. The findings are summarized as follows, 1) an appropriate header main body pipe diameter was deemed to be $32{\sim}50\;mm$. 2) the research presented design measures for the application of appropriate water supply inlet pipe diameters according to residential buildings with various sizes. 3) the header direct branch piping method is ideal for small and medium-sized residential complexes, and the header branching and semi header methods are deemed to be more favorable for large residential complexes. 4) this study offered design measures for appropriate header system main body pipe diameters, water supply inlet pipe diameters, header system piping methods, application methods for functional auxiliary equipment units, and header system installation spaces and location.

자연순환형 태양열온수기 동파방지기술 (Freeze Protection for Passive Solar Water Heating System)

  • 김종현;홍희기;정재동
    • 설비공학논문집
    • /
    • 제23권5호
    • /
    • pp.327-333
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and shortage of excessive electric power consumption. In the experimental device, hot water in storage tank was used to heat the outlet pipe from the tank if the pipe surface temperature falls lower than a set point. The cold water pipe to the storage tank was installed to directly contact the hot water pipe surface temperature rose by transferred heat.

단순 열전달 모델을 이용한 히트파이프의 열전달 성능특성에 관한 연구 (Heat transfer characteristics of the heat pipe using simplified heat transfer model)

  • 서재형;방유마;서이수;이무연
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.15-20
    • /
    • 2015
  • 본 연구의 목적은 전기동력 자동차의 전기-전자 장비들을 효과적으로 냉각시키면서 자체적으로 에너지 소비를 최소화 시킬 수 있는 노력의 일환으로, 단순 열전달 모델을 이용하여 윅이 있는 히트파이프의 열전달 및 유동 특성을 고찰하는 것이다. 이를 위하여 히트파이프는 COMSOL프로그램을 이용하여 해석하였고, 작동유체로 물을 이용하였다. 또한, 히트파이프의 속도 및 온도 특성을 히프파이프 길이에 따라 해석하였고, 국소 및 평균 Nu수를 계산하였다. 결과적으로, 히트파이프의 관성력은 가열면과 냉각면의 온도차에 의하여 발생하였다. 히트파이프내 열전달은 가열면에서 냉각면으로 발생하고 히트파이프 중앙으로 갈수록 증가하였다. 더불어, 가열면의 Nu수는 최대 4.47로 나타났으며, 평균 Nu수는 1.88이고, 냉각면의 Nu수는 최대 0.7로 나타났으며, 평균 Nu수는 0.1이다.

고온기 근권냉방방식에 따른 냉방효과와 토마토 생육 (Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season)

  • 이재한;권준국;권오근;최영하;박동금
    • 생물환경조절학회지
    • /
    • 제11권2호
    • /
    • pp.81-87
    • /
    • 2002
  • 근권냉방 방식에 따른 냉방 효율과 토마토 생육 특성을 검토하고자 XL냉수순환, 라디에이타 냉풍, 패드냉풍 및 대조구를 처리한 결과는 다음과 같다. 근권부 냉방온도는 공급수온이 17.8$^{\circ}C$일 때 XL 냉수순환구는 18.$0^{\circ}C$ 라디에이타 냉풍구는 27.2$^{\circ}C$, 패드 냉풍구는 20.3$^{\circ}C$였다. 배지 깊이와 시간대별 평균온도는 XL냉수순환구 22.8~24.7$^{\circ}C$. 라디에이타 냉풍구 22.7~24.2$^{\circ}C$, 패드 냉풍구 20.5~23.2$^{\circ}C$, 대조구 25.9~29.6$^{\circ}C$를 나타내어 냉방처리구가 대조구에 비해 5~6$^{\circ}C$더 낮았다. 토마토의 생육에 있어 엽장. 엽폭은 대조구에 비해 컸으며, 생체중 및 건물중의 경우에서도 비슷한 경향이었다 근활력에 있어 대조구는 45.0ug/g에 비해 근권냉방 처리구는 58.5-62.8 ug/g으로 높았으나. 근권냉방 처리구간에는 큰 차이가 없었다.

매스콘크리트 시험체의 수화열 해석 및 실험 (Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements)

  • 주영춘;김은겸;신치범;조규영;박용남
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF