DOI QR코드

DOI QR Code

Heat transfer characteristics of the heat pipe using simplified heat transfer model

단순 열전달 모델을 이용한 히트파이프의 열전달 성능특성에 관한 연구

  • Seo, Jae-Hyeong (School of Mechanical Engineering, Dong-A University) ;
  • Bang, Yu-Ma (School of Mechanical Engineering, Dong-A University) ;
  • Seo, Lee-Soo (School of Mechanical Engineering, Dong-A University) ;
  • Lee, Moo-Yeon (School of Mechanical Engineering, Dong-A University)
  • Received : 2014.09.23
  • Accepted : 2015.01.08
  • Published : 2015.01.31

Abstract

The objective of this study was to examine numerically the heat transfer and flow characteristics of the heat pipe with a wick using the simplified heat transfer model to enhance the cooling effects of high heat flux devices and minimizing the energy consumption for electric vehicles. The heat pipe with a wick was analyzed using commercial software with COMSOL and water was used as the working fluid. The velocity and temperature characteristics of the heat pipe were simulated numerically along the heat pipe and the local and average Nusselt numbers were calculated. As a result, the driving force occurred because of the temperature difference between the hot side and the cold side. The heat transfer of the heat pipe occurred from the hot side to the cold side and increased toward the center position. In addition, the average Nusselt numbers were 1.88 for the hot side and 0.1 for the cold side, and the maximum Nusselt number was 4.47 for the hot side and 0.7 for the cold side.

본 연구의 목적은 전기동력 자동차의 전기-전자 장비들을 효과적으로 냉각시키면서 자체적으로 에너지 소비를 최소화 시킬 수 있는 노력의 일환으로, 단순 열전달 모델을 이용하여 윅이 있는 히트파이프의 열전달 및 유동 특성을 고찰하는 것이다. 이를 위하여 히트파이프는 COMSOL프로그램을 이용하여 해석하였고, 작동유체로 물을 이용하였다. 또한, 히트파이프의 속도 및 온도 특성을 히프파이프 길이에 따라 해석하였고, 국소 및 평균 Nu수를 계산하였다. 결과적으로, 히트파이프의 관성력은 가열면과 냉각면의 온도차에 의하여 발생하였다. 히트파이프내 열전달은 가열면에서 냉각면으로 발생하고 히트파이프 중앙으로 갈수록 증가하였다. 더불어, 가열면의 Nu수는 최대 4.47로 나타났으며, 평균 Nu수는 1.88이고, 냉각면의 Nu수는 최대 0.7로 나타났으며, 평균 Nu수는 0.1이다.

Keywords

References

  1. Jong Heung Park, Hong-Koo Noh and Jae-Heon Lee, 1998, "Operating Characteristics of a Heat Pipe with Two Heat Sources", KSME int. J. (B), Vol. 22, No.3, PP. 303-315
  2. Kwang Bin Yim and Jin Sung Lee, 1999,"A Fundamental Study on Development of a Rotating Horizontal Heat pipe", Energy Engg. J., Vol. 8, No. 2, pp. 325-332
  3. Joon Hong Boo and Soo Yong Park, 2005,"An Experimental Study on the Thermal Performance of a Concentric Annular Heat Pipe", KSME Int. J. Vol. 19, No. 4 pp. 1036-1043 https://doi.org/10.1007/BF02919187
  4. Young Hark Park, Eui Guk Jung and Joon Hong Boo, 2007, "A Study on the Performance Characteristics of a Heat Pipe Combined with PCM", KSME int. J., Vol pp. 1460-1464.
  5. Sang-Hyun Noh and Dong-Ryul Lee, 2006, "Cooling Method of the Actuating Motor Using Heat Pipe", Tran. SAREK, pp. 1168-1173
  6. H. Y. Jun and J. H. Kim, 2006, "Thermal Analysis of Surface Heat Pipe Installed Panel of Geostationary Satellite" KSCFE, Vol. 11, No. 3, pp. 8-13
  7. Dong-Ryul Lee, 2006, "Investigation of Cooling Performance of the Driving Motor Utilizing Heat Pipe", KSPSE, Vol. 10, No.4, pp. 11-16
  8. Hiroaki Ishikawa, Takehide Nomura, Tetsuro Ogushi, Hiroyuki Noda, Haruo Kawasaki and Takahiro Yabe, 2009, "Study on Heat Transfer Characteristics of Reservoir Embedded Loop Heat Pipe (Influence of Condenser Cooling Method on Heat Transfer Characteristics)", Heat Transfer- Asian Research 38 (2), pp. 118-133 DOI: http://dx.doi.org/10.1002/htj.20229
  9. L. Rosso, N. Koneva and V. Fernicola, 2009, "Development of a Heat-Pipe-Based Hot Plate for Surface-Temperature Measurements", Int. J. Thermophys, 30:257-264 DOI: http://dx.doi.org/10.1007/s10765-008-0495-9