• Title/Summary/Keyword: Cold Bending

Search Result 121, Processing Time 0.028 seconds

EFFECTS OF LOW-TEMPERATURE HEAT TREATMENT ON ELASTIC MEMORY PROCESS OF COLD WORKED STAINLESS STEEL WIRE (열처리가 냉간가공한 stainless steel wire의 복원양상에 미치는 영향)

  • Oh, Jeung-Sei;Park, Soo-Byung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.22 no.3 s.38
    • /
    • pp.647-656
    • /
    • 1992
  • The purpose of this study was to evaluate the elastic memory process in cold worked stainless steel wire and the effect of heat treatment on it. 0.018 inch round and $0.019\times0.025$ inch rectangular wire (ORMCO stainless wire) were used in this study. Each wire type had 4 groups: non-heat treatment group, furnace heat treatment group, electric current heat treatment group, and bending after heat treatment group. Each group was consisted of 10 specimens. With the Jig, each wire was bent into v-shape uniformly, and width of two free ends of each v-shaped wire was measured by caliper (to the point of 0.1 mm correctly) at time interval of offjig, after heat treatment, 1, 2, 3, 4 hours, 1, 2, 3, 4, 5, 6 days, 1, 2, 3, 4 weeks after. The results were as follows: 1. In non-heat treatment group and bending after heat treatment group, elastic memory process was occured $60\%$ within 1 hour, and more than $90\%$ within 1 week. 2. In furnace and electric current heat treatment group, almost all elastic memory process was occured during teat treatment, and then specimen was stabilized dimensionally. 3. Magnitude of deformation by elastic memory was greater in heat treatment group than non heat treatment group and bending after heat treatment group. 4. There was no remarkable difference in deformation pattern between 0.018 inch round wire and $0.019\times0.025$ inch rectangular wire.

  • PDF

Economic construction management of composite beam using the head stud shear connector with encased cold-formed steel built-up fix beam via efficient computer simulation

  • Yin, Jinzhao;Tong, Huizhi;Gholizadeh, Morteza;Zandi, Yousef;Selmi, Abdellatif;Roco-Videla, Angel;Issakhov, Alibek
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.429-445
    • /
    • 2021
  • With regard to economic efficiency, composite fix beams are widely used to pass longitudinal shear forces across the interface. The current knowledge of the composite beam load-slip activity and shear capability are restricted to data from measurements of push-off. Modelling and analysis of the composite beams based on Euro-code 4 regarding to shear, bending, and deflection under differing loads were carried out using Finite Element through an efficient computer simulation and the final loading and sections capacity based on the failure modes was analysed. In bending, the section potential was increased by an improvement of the strength in both steel and concrete, but the flexural and compressive resistance growth is very weak (3.2% 3.1% and 3.0%), while the strength of the concrete has increased respectively from 25 N/mm2 to 30, 35, and 40 N/mm2 compared to the increment of steel strength by 27% and 21% when it was raised from 275 to 355 and 460 N/mm2, respectively. It was found that the final flexural load capacity of fix beams was declined with increase in the fix beam span for both three steel strength. The shear capacity of sections was remained unchanged at constant steel strength and different length, but raised with final yield strength increment of steel sections by 29%, and 67% when it was raised from 275 N/mm2 to 355 N/mm2 and 460 N/mm2, respectively.

Vibration behaviour of cold-formed steel and particleboard composite flooring systems

  • AL Hunaity, Suleiman A.;Far, Harry;Saleh, Ali
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.403-417
    • /
    • 2022
  • Recently, there has been an increasing demand for buildings that allow rapid assembly of construction elements, have ample open space areas and are flexible in their final intended use. Accordingly, researchers have developed new competitive structures in terms of cost and efficiency, such as cold-formed steel and timber composite floors, to satisfy these requirements. Cold-formed steel and timber composite floors are light floors with relatively high stiffness, which allow for longer spans. As a result, they inherently have lower fundamental natural frequency and lower damping. Therefore, they are likely to undergo unwanted vibrations under the action of human activities such as walking. It is also quite expensive and complex to implement vibration control measures on problematic floors. In this study, a finite element model of a composite floor reported in the literature was developed and validated against four-point bending test results. The validated FE model was then utilised to examine the vibration behaviour of the investigated composite floor. Predictions obtained from the numerical model were compared against predictions from analytical formulas reported in the literature. Finally, the influence of various parameters on the vibration behaviour of the composite floor was studied and discussed.

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

Numerical and Experimental Study of U-Bending of SUS304L Heat Transfer Tubes (SUS304L 튜브의 U-Bending 성형공정에 관한 해석적·실험적 연구)

  • Kim, Y.B.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.405-412
    • /
    • 2014
  • As a major type of heat exchanger, the steam generator (SG) produces steam from heat energy of a nuclear power plant reactor. The steam produced by the steam generator flows into a turbine, and plays an important role in electric power generation. The heat transfer tubes in the steam generator consist of approximately 10,000 U-shaped tubes, which perform a structural role and act as thermal boundaries. The heat transfer tubes conduct the thermal energy between the primary coolant (about $320^{\circ}C$, $157kgf/cm^2$) obtained from the reactor and the secondary coolant (about $260^{\circ}C$, $60kgf/cm^2$) as part of the secondary system. Recently, the heat transfer tubes in the steam generator of the pressurized water reactor (PWR) are primarily produced from Alloy 600 and Alloy 690 seamless tubes. As a pilot study to find process parameters for the cold U-bending process using rotary draw bending, numerical and experimental investigations were conducted to produce U-shaped tubes from long straight SUS304L seamless tubes. 3D finite element simulations were run using ABAQUS Explicit with consideration of the elastic recovery. The process parameters studied were the angular speed, the operation period and the bending angle. Experimental verifications were conducted to insure the suitability of the final U-shaped configurations with respect to both ovality and wall thickness.

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

Press Formabilities of Aluminum Sheets for Autobody Application (차체용 알루미늄 판재의 프레스 성형성)

  • Kim, Y.S.;Kim, K.S.;Kwon, N.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.73-83
    • /
    • 1994
  • Press formabilities of aluminum sheets for automobile body were investigated. Plane strain stretching test (called RIST-PSST), cupping test and U bending test were performed to assess the press formability of aluminum sheets respectively. The results showed that aluminum sheets are generally inferior to cold-rolled steel sheet of deep drawing quality (CSP3N) in press formability. The limiting punch height (LPH) and limiting plane strain (FLCo) of aluminum sheets are 50%-70% level compared to that of CSP3N. Moreover, the limiting drawing ratios(LDR) of aluminum sheets are ranged between 1.95 and 2.1. The poor press formability of aluminum sheets is responsible for low values of total elongation and plastic anisotropy parameter in tensile characteristic. The shape fixability of aluminum sheets evaluated in U bending test is very poor due to its low elastic modulus compared to CSP3N.

  • PDF

A Study on the Press Forming by Rectangular Tube of Al6063 Alloys (Al6063 합금 중공각재 튜브에 의한 프레스 성형 연구)

  • Lee, Choung-Kook;Kim, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • In this study, a method for the press forming of rectangular aluminium tube has been proposed. Rectangular aluminium tube has high stiff as the cold steel which can be lighter over 30% weight. It is increased every year by being recycled over 80%. Press die consists of punch, wing-die and holder for aluminium tube bending. When punch is applied with aluminium tube, holder is operated as same punch and wing-die is rotated through hinge. Stress-strain relations and springback are considered by bending angle of aluminium tube. In this study, the behaviors on tubes of square aluminium and rectangular aluminium with different thickness and area are established by the analysis of $DEFORM^{TM}$-3D program. Reducing fuel consumption is expected by using the aluminium tube deformation and it becomes the lightweight through recycling.

Manufacturing and Evaluation of Properties of Nanocrystalline Ni bulk by Dynamic Compaction of Nano Ni powders using a Gas-gun System (나노 니켈 분말의 가스건 고속압축을 통한 나노결정립 니켈 벌크재의 제조 및 물성)

  • Kim, Wooyeol;Ahn, Dong-Hyun;Park, Lee Ju;Park, Jong-Il;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.44-49
    • /
    • 2014
  • In this study, nanocrystalline nickel powders were cold compacted by a dynamic compaction method using a single-stage gas gun system. A bending test was conducted to measure the bonding strengths of the compacted regions and microstructures of the specimen were analyzed using a scanning electron microscopy. The specimen was separated into two parts by a horizontal crack after compaction. Density test shows that the powder compaction occurred only in the upper part of the specimen. Brittle fracture was occurred during the bending test of the compact sample. Dispersion of shock energy due to spalling highly affected the bonding status of the nanocrystalline nickel powder.

Thermal stability and Young's modulus of mechanically exfoliated flexible mica

  • Jin, Da Woon;Ko, Young Joon;Kong, Dae Sol;Kim, Hyun Ki;Ha, Jae-Hyun;Lee, Minbaek;Hong, Jung-Il;Jung, Jong Hoon
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1486-1491
    • /
    • 2018
  • In recent years, mica has been successfully used as a substrate for the growth of flexible epitaxial ferroelectric oxide thin films. Here, we systematically investigated the flexibility of mica in terms of its thickness, repeated bending/unbending, extremely hot/cold conditions, and successive thermal cycling. A $20-{\mu}m-thick$ sheet of mica is flexible even up to the bending radius of 5 mm, and it is durable for 20,000 cycles of up- and down-bending. In addition, the mica shows flexibility at 10 and 773 K, and thermal cycling stability for the temperature variation of ca. 400 K. Compared with the widely used flexible polyimide, mica has a significantly higher Young's modulus (ca. 5.4 GPa) and negligible hysteresis in the force-displacement curve. These results show that mica should be a suitable substrate for piezoelectric energy-harvesting applications of ferroelectric oxide thin films at extremely low and high temperatures.