• Title/Summary/Keyword: Coils

Search Result 1,140, Processing Time 0.029 seconds

Spiral Coil Magnetostrictive Strip Transducers for Long Range Ultrasonic Testing of Cylindrical Structures (실린더형 구조물의 원거리 초음파검사용 나선형 코일 자왜 스트립 변환기)

  • Heo, Won-Nyoung;Choi, Myoung-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.416-420
    • /
    • 2008
  • In EMAT field, spiral RF coils are much more widely used when compared with solenoid coils. In the field of the magnetostrictive strip transducers for long range ultrasonic testing of cylindrical structures, however, solenoid coils has been used. This seems to be attributed to the difficulty in fabricating low frequency (i.e., large size) spiral coils. In this paper, we describe a method for fabricating spiral coil magnetostrictive strip guided wave transducers from FFC (flexible flat cable). It is demonstrated through a comparison experiment that the spiral coil transducer has much superior performance (sensitivity, SNR, and guided wave direction control capability) than the previous transducer with solenoid coils.

Minimum-Power and/or Minimum-Inductance Design of MRI Gradient Coils Using Loop-Current Elements (환전류소를 이용한 MRI용 경사자계코일의 최소전력/최소인덕턴스설계)

  • Lee, D.R.;Yang, Y.J.;Kim, S.K.;Ahn, C.B.;Lee, H.K.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.108-110
    • /
    • 1997
  • In MRI, gradient coils are needed for spatial selection and position coding to obtain the position information of the NMR signal. In this paper, a new design scheme for actively-shielded x, y-gradient coils, namely, a minimum-power and/or minimum-inductance design scheme using current-loop elements, has been proposed. Its utility in designing MRI gradient coils has been shown by using simulation. An actively-shielded x-gradient coil has been designed as an example and the results are presented. The design scheme seems to be useful for actively-shielded transverse gradient coils, even of non-cylindrical or of arbitrarily -selected shapes.

  • PDF

Modeling of 3-stage Electromagnetic Induction Launcher

  • Kwak, Daehwan;Kim, Young Bae;Kim, Jong Soo;Cho, Chuhyun;Yang, Kyung-Seung;Kim, Seong-Ho;Lee, Byung-Ha;An, Sanghyuk;Lee, Young-Hyun;Yoon, Seok Han;Koo, In Su;Baik, Yong Gi;Jin, Yun Sik
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • Electromagnetic Induction Launchers (EIL) have been receiving great attention due to their advantages of non-contact between the coils and a projectile. This paper describes the modeling and design of 3-stage EIL to accelerate a copper projectile of 50 kg with 290 mm diameter. Our EIL consists of three independent driving coils and pulsed power modules to generate separate driving currents. To find efficient acceleration conditions, the appropriate shape of the driving coils and the position of the projectile have been calculated by using a finite element analysis (FEA) method. The results showed that the projectile can be accelerated more effectively as the gap between the coils is smaller; a final velocity of 45 m/s was obtained. The acceleration efficiency was estimated to be 23.4% when a total electrical energy of 216 kJ was discharged.

Optimal Design of the Optical Pickup Actuator Coil (광픽업 구동기 코일최적설계)

  • Yoon Young, Kim;Woochun, Kim;Jae Eun, Kim
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.352-355
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

  • PDF

Evaluation of a model coil characteristics for HTS rotating machine using conduction-cooled (전도 냉각을 이용한 고온 초전도 회전기용 모델 코일의 특성 평가)

  • Lee, J.D.;Baik, S.K.;Sohn, M.H.;Lee, E.Y.;Kim, Y.C.;Kwon, Y.K.;Park, M.W.;Yu, I.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.725-726
    • /
    • 2006
  • In large scale superconducting rotating machine, HTS field coils are constructed with many stacks of single or double pancake coils connected in series. In spite of its higher thermal stability, HTS field coil experiences some quench, which results in some part of burn-out in the field coils. Thus in the view point of the HTS rotating machine field coil design and testing, it was very important to predict the possibility of quench occurrence in the designed field coils. In this paper, a HTS racetrack coil constructed with two single pancake coils and one double pancake coil was tested in LN2 and cooling by GM refrigerator. It is wound using the Bi-2223 tape. The experimental details and results are presented in this paper.

  • PDF

Voltage disturbance detection method for HTS tape using electromagnetically coupled coils

  • Song, Seunghyun;Lee, Jiho;Lee, Woo Seung;Jin, Hongwoo;Hwang, Young Jin;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • This paper represents the detection method of voltage disturbance for high temperature superconducting (HTS) tape using electromagnetically coupled coils. In order to detect the voltage as the superconductor transits from the superconducting state to the normal conduction state, voltage taps are widely used to get the voltage signal. And voltage taps are connected to data acquisition device via signal wires. However this new suggested method can detect the superconducting transition voltage without signal wires between voltage taps and data acquisition device by using electromagnetically coupled coils. This system consists of two electromagnetically coupled coils, the first coil to detect and transmit the voltage of HTS tape and the second coil to pick up the transmitted voltage from the first coil. By using this new suggested method, we can build the 'separated voltage-detection system'. HTS tape and first coil are located under liquid nitrogen vessel and the second coil is located under room temperature condition. In this paper, experiments are performed to verify the feasibility of the proposed method. As the result of the experiment, the separated voltage-detection system using electromagnetically coupled coils can successfully observe superconducting-normal transition of HTS tapes.

Efficient Re-degaussing Technique for a Naval Ship Undergoing a Breakdown in Degaussing Coils

  • Kim, Dong-Wook;Lee, Sang-Kyun;Kang, Byungsu;Cho, Jeonghun;Lee, WooSeok;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.197-203
    • /
    • 2016
  • A naval ship equipped with a degaussing system may undergo a breakdown in degaussing coils at sea. In the case, underwater magnetic field around the ship abruptly grows up and it can make the ship be easily exposed to fatal hazards such as magnetic mines or torpedoes. This paper proposes an efficient and practical re-degaussing technique for a ship where a part of degaussing coils is out of order. To achieve this, an analytical design sensitivity formula and approximated degaussing coil field are exploited, and then new optimum currents of available coils are reassessed. To validate the proposed method, a muck-up ship equipped with 14 degaussing coils is tested in scale-down magnetic treatment facilities under three faulty coil conditions.

Analysis on Simulation and Experiment for Fault Current Limiting Characteristics of SFCL using Magnetic Coupling of Two Coils with Series Connection (직렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 사고전류제한 특성 시뮬레이션 및 실험 분석)

  • Kim, Jae-Chul;Lim, Sung-Hun;Kim, Jin-Seok;An, Jae-Min;Moon, Jong-Fil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.26-30
    • /
    • 2008
  • The simulation and experiment for the fault current limiting characteristics of the superconducting fault current limiter (SFCL) using the magnetic coupling of series connected two coils were performed. The magnetic fluxes generated from two coils were canceled out during a normal time. However, the resistance generation of high-Tc superconducting (HTSC) element after a fault occurrence allows the magnetic fluxes of two coils and contributes to the fault current limiting operation. Through the computer simulation and the current limiting experiment for this SFCL, the operational current and the limiting impedance of the SFCL could be confirmed to be improved by adjusting the inductance ratio of two coils.

Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils (병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Contact resistance characteristics of 2G HTS coils with metal insulation

  • Sohn, M.H.;Ha, H.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.26-30
    • /
    • 2018
  • The turn-to-turn contact resistance of 2G high temperature superconducting (HTS) coils with metal insulation (MI) is closely related to the stability of the coils, current charging rate and delay time [1]. MI coils were fabricated using five kinds of metal tapes such as aluminum (Al) tape, brass tape, stainless steel (SS) tape, copper (Cu)-plated tape and one-sided Cu-plated SS tape. The turn-to-turn contact surface resistances of co-winding model coils using Al tape, brass tape, and SS tape were 342.6, 343.6 and $724.8{\mu}{\Omega}{\cdot}cm^2$, respectively. The turn-to-turn contact resistance of the model coil using the one-sided Cu-plated SS tape was $ 248.8{\mu}{\Omega}{\cdot}cm^2$, which was lower than that of Al and brass tape. Al or brass tape can be used to reduce contact resistance and improve the stability of the coil. Considering strength, SS tape is recommended. For strength and low contact resistance, SS tape with copper plating on one side can be used.