Browse > Article
http://dx.doi.org/10.4283/JMAG.2015.20.4.394

Modeling of 3-stage Electromagnetic Induction Launcher  

Kwak, Daehwan (Korea University of Science and Technology)
Kim, Young Bae (Korea Electrotechnology Research Institute)
Kim, Jong Soo (Korea Electrotechnology Research Institute)
Cho, Chuhyun (Korea Electrotechnology Research Institute)
Yang, Kyung-Seung (Agency for Defense Development)
Kim, Seong-Ho (Agency for Defense Development)
Lee, Byung-Ha (Agency for Defense Development)
An, Sanghyuk (Agency for Defense Development)
Lee, Young-Hyun (Agency for Defense Development)
Yoon, Seok Han (Hyundaiwia Corporation)
Koo, In Su (Hyundaiwia Corporation)
Baik, Yong Gi (Hyundaiwia Corporation)
Jin, Yun Sik (Korea Electrotechnology Research Institute)
Publication Information
Abstract
Electromagnetic Induction Launchers (EIL) have been receiving great attention due to their advantages of non-contact between the coils and a projectile. This paper describes the modeling and design of 3-stage EIL to accelerate a copper projectile of 50 kg with 290 mm diameter. Our EIL consists of three independent driving coils and pulsed power modules to generate separate driving currents. To find efficient acceleration conditions, the appropriate shape of the driving coils and the position of the projectile have been calculated by using a finite element analysis (FEA) method. The results showed that the projectile can be accelerated more effectively as the gap between the coils is smaller; a final velocity of 45 m/s was obtained. The acceleration efficiency was estimated to be 23.4% when a total electrical energy of 216 kJ was discharged.
Keywords
induction launcher; mutual inductance; pulsed power; driving coils; finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. McKinney and P. Mongeau, IEEE Trans. Magn. 20, 239 (1984).   DOI
2 R. Kaye, B. Turman, M. Aubuchon, D. Lamppa, G. Mann, Edward van Reuth, K. Fulton, G. Malejko, P. Magnotti, D. Nguyen, D. Borgwarth, A. Johnson, and R. Poppe, in Proc. 16th IEEE Int. Pulsed Power Conf., 1810 (2007).
3 M. S. Aubuchont, T. R. Lockner, and B. N. Turman, in Proc. 15th IEEE Int. Pulsed Power Conf., 75 (2005).
4 B. D. Skurdal and R. L. Gaigler, IEEE Trans. Magn. 45, 458 (2009).   DOI
5 S. Barmada, A. Musolino, M. Raugi, and R. Rizzo, IEEE Trans. Magn. 37, 111 (2001).   DOI
6 R. J. Kaye, IEEE Trans. Magn. 41, 194 (2005).   DOI
7 Y. S. Jin, Y. B. Kim, J. S. Kim, C. Cho, S. W. Lim, B. Lee, S. H. Kim, S. An, S. H. Yoon, and I. S. Koo, IEEE Trans. Plasma Sci. 41, 2671 (2013).   DOI
8 B. Lee, S. An, S. H. Kim, Y. H. Lee, K. S. Yang, Y. S. Jin, Y. B. Kim, J. S. Kim, C. Cho, S. H. Yoon, and I. S. Koo, IEEE Trans. Plasma Sci. 42, 2886 (2014).   DOI
9 H. Kolm and P. Mongeau, IEEE Trans. Magn. 20, 227 (1984).   DOI
10 S. Babic, F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R Ravaud, IEEE Trans. Magn. 47, 2034 (2011).   DOI
11 K. A. Polzin, J. E. Adwar, and A. K. Hallock, IEEE Trans, Magn. 49, 1453 (2013).   DOI
12 S. Madhavan, C. D. Sijoy, S. Pahari, S. Chaturvedi, and IPF Team, IEEE Trans. Plasma Sci. 42, 323 (2014).   DOI
13 X. Tao, S. Wang, Y. Huangfu, S. Wang, and Y. Wang, IEEE Trans. Plasma Sci. 43, 1208 (2015).   DOI