• Title/Summary/Keyword: Cognitive Levels

Search Result 704, Processing Time 0.025 seconds

Point Symbols on Tourist Maps: Cognitive Characteristics with Levels of Symbolization and Preference (관광지도 점기호의 상징수준과 선호도에 나타난 인지특성 연구)

  • Shim, Hye-Kyoung;Jung, In-Chul
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.981-1001
    • /
    • 2008
  • This research deals with cognitive characteristics of point symbols on the current tourist maps in terms of the communication theory in considering levels of symbolization and those of preference. The levels of symbolization are examined on the basis of the meaning of point symbols between map-makers and map-users. Preferences of point symbols are investigated by the tourist objects. As a result, when point symbols are expressed in conciseness, the meaning and interpretation about those symbols are highly accorded. And the point symbols that have familiarity by visual experience are preferred. Also, the higher symbolical levels symbols have, the more likely they are preferred. Through that fact, familiarity from the visual experience, conciseness in expression, concreteness of figures expressed in maps, and representativeness of visualized properties were deduced as factors that affect preferences. Those factors work to affect preference complicatedly, but familiarity is prior to simplicity in preferences. Likewise, ways that visualize information, contents that are expressed as images and familiarity in terms of cognitive characteristics make a relative difference in preferences and the levels of symbolization. On the basis of those cognitive characteristics, visual complexity and ambiguity should be removed and the higher symbolical level of point symbols for efficiency of map-reading should be developed.

Analysis of the Level of Mathematical Concepts in Middle School Science Textbooks and Students' Cognitive Levels: Focused on Chemistry and Biology of the 2015 Revised Curriculum (중학교 과학 교과서에서 요구하는 수학 관련 과학 개념의 수준 및 학생들의 인지 수준 분석: 2015 개정 교육 과정의 화학과 생물을 중심으로)

  • Heesun Yang;Hyang-rae Cho;Seong-Joo Kang
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • This study aimed to analyze students' cognitive levels and the cognitive demands of mathematical concepts related to science to understand why students struggle to comprehend scientific concepts and tend to avoid learning them. Initially, the mathematics and science curricula of the 2015 revised curriculum were examined to extract learning elements related to mathematics within middle school science content. The Curriculum Analysis Taxonomy (CAT) was then employed to analyze the cognitive levels required by the learning content. In the domain of chemistry, among a total of 20 learning elements related to mathematics, 12 required an understanding at the level of initial formal manipulation (3A), while 3 necessitated comprehension at the level of later formal manipulation (3B). It was noted that cognitive logic types such as proportional reasoning, mathematical manipulation, and measurement skills were prominently employed in elements corresponding to both 3A and 3B. As for biology, out of 7 learning elements related to mathematics, 3 required an understanding at the level of initial formal manipulation (3A), and 2 necessitated comprehension at the level of later formal manipulation (3B). Elements corresponding to both 3A and 3B in biology predominantly involved correlational logic, indicating a somewhat different cognitive challenge compared to the domain of chemistry. Considering that the average percentage of middle school students capable of formal thinking, as analyzed through the GALT short form, was 12.1% for the first year, 16.6% for the second year, and 29.3% for the third year, it can be concluded that the cognitive demands of mathematics-related chemistry and biology learning content are relatively high compared to students' cognitive levels.

Effects of a Single Session of Brain Yoga on Brain-Derived Neurotrophic Factor and Cognitive Short-Term Memory in Men Aged 20-29 Years

  • Yang, Hyun-Seong;Kim, Hyun-Jun;Lee, Hwa-Gyeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.4
    • /
    • pp.91-103
    • /
    • 2021
  • Purpose : This study aimed to evaluate the effects of a cognitive enhancement brain yoga program on short-term memory and serum brain-derived neurotrophic factor (BDNF) levels according to the cognitive state in men aged 20-29 years. Methods : Thirty healthy volunteers aged 20-29 years were divided into four groups: brain yoga group, yoga group, combined exercise group, and control group. Seven people were assigned randomly per group. A single-session intervention was conducted over 50 min and consisted of three parts: warm-up, main exercise (brain yoga, yoga, combined exercise, or non-exercise), and cool-down. Serum BDNF levels were measured using enzyme-linked immunosorbent assay, and short-term memory was evaluated using the forward number span test before and after the intervention. Results : BDNF levels significantly increased within the brain yoga group after the intervention (from 28874.37±5185.57 to 34074.80±7321.12, p=.003), whereas there were no significant differences pre-and post-intervention in the other groups. The inter-group comparison showed a significant interaction between the brain yoga group and the combined exercise group (p=.036) but no significant interaction between any of the other groups. Forward number span scores were significantly increased in the brain yoga group (from 9.43±9.83 to 23±7.92, p=.012) and theyoga group after the intervention (from 13.43±9.41 to 24.14±8.45, p=.011), whereas there were no significant changes after the intervention in any other groups. Conclusion : Our findings showed that a single-session, 50-minute brain yoga exercise improved short-term memory and increased serum BDNF levels in healthy men aged 20-29 years and that yoga improved only short-term memory in healthy men of this age group.

Investigating Secondary Mathematics Teachers' Capacity to Select and Pose Cognitively Demanding Tasks (중등 수학교사의 과제 이해 및 변형 능력 : 인지적 노력 수준 중심으로)

  • Kim, Jung Eun;Lee, Soo Jin;Kim, Ji Soo
    • School Mathematics
    • /
    • v.17 no.4
    • /
    • pp.633-652
    • /
    • 2015
  • The purpose of the present study is twofold: one is to understand secondary mathematics teachers' capacity to sort out given tasks based on Stein & Smith(1998)'s Cognitive Demands of Mathematical Task Framework; the second is to examine how the teachers assess the levels of cognitive demand indicated in students' reponses and how they modify the tasks to elicit the students' higher levels of cognitive activity. The analysis of 45 teachers' responses to the survey indicates that the teachers, in general, could select appropriate tasks for the given goal of the lessons but some made the decision merely by their appearances. Even though the teachers chose a particular level with different reasons amongst each other, most teachers could correctly evaluate the levels of cognitive demand of the students' responses. Finally, teachers could pose cognitively demanding tasks using various methods, but a number of them felt challenged in creating word problems that were realistic and aligned with curriculum.

Effects of auditory feedback and task difficulty on the cognitive load and virtual presence in a virtual reality dental simulation

  • Kim, Byunggee;Yang, Eunbyul;Choi, Namki;Kim, Seonmi;Ryu, Jeeheon
    • The Journal of the Korean dental association
    • /
    • v.58 no.11
    • /
    • pp.670-682
    • /
    • 2020
  • This research examined the difference in cognitive load and the virtual presence depending on auditory feedback and task difficulty in haptic-based dental simulation. In the field of dental education, practice-centered training using handpiece has been crucial because a practitioner's psychomotor experience has a significant impact on the mastery of treatment skills. For the novice, it is necessary to reduce errors in dental treatment to enhancing skill acquisition in the haptic practice. In the training process, the force-feedback is crucial to elaborate subtle movement to guide what to do and how it should be hard or soft. However, It is not easy to add force-feedback to generate kinetic experience training. As an alternative method, we examined that auditory feedback can help learners' skill training. In this study, we analyzed how the presence/absence of auditory feedback at the different levels of task difficulty impacts learners' psychological demand and virtual presence in the virtual reality simulation. For this study, 29 dental college students participated in a dental simulation. The participants were grouped into two conditions that are with and without auditory feedback. Additionally, two consecutive tooth preparation tasks with different levels of difficulty were used in the simulation. The auditory feedback condition gives alarms to a learner when he treats a non-targeted tooth with a virtual handpiece. The user's cognitive load and virtual presence were measured to examine the effects of auditory feedback. The results revealed that the main effect was found in cognitive loads. Also, a significant interaction effect was shown in the virtual presence. We discussed the effective design methods for the virtual reality-based dental simulation through the result of this study.

  • PDF

Investigating the Hierarchical Nature of Content and Cognitive Domains in the Mathematics Curriculum for Korean Middle School Students via Assessment Items (평가 문항을 활용한 중학교 수학 교육과정의 내용 및 인지행동의 위계성 조사)

  • Song, Mi-Young;Kim, Sun-Hee
    • School Mathematics
    • /
    • v.9 no.2
    • /
    • pp.223-240
    • /
    • 2007
  • The purpose of this study was to investigate the degree to which the middle school mathematics curriculum matched the item difficulty levels of representative mathematics items. The items used in this study were developed for the National Assessment of Educational Achievement. Ranks for difficulty values of the 60 multiple-choice item were calculated via both Classical Test Theory and Item Response Theory and correlated with the rank order of the mathematics content and cognitive domains sequence. There are six content domains; number and operation, algebra, measurement, figure, pattern and function, and probability and statistics. The cognitive domains include computation, understanding, reasoning and problem-solving. Results suggest a congruence between cognitive domain's sequence and item difficulty levels of items based on that sequence. This finding indicates that the linear or hierarchical assumptions concerning the sequence appears to be reasonable. The characteristics of items that were exceptions to this trend were addressed.

  • PDF

Cognitive Distance Mapping: a Survey-Based Experiment Using GPS and GIS

  • Park, Sun-Yurp
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.433-449
    • /
    • 2006
  • Two primary objectives of this study were to determine important personal factors in performing cognitive distance mapping, and to understand how human's cognitive distance mapping capabilities were influenced by reference and subjects' locations using Global Positioning System (GPS). Undergraduate and graduate students at the University of Kansas, USA were interviewed and surveyed throughout the campus area giving them a paper-and-pencil test. Study results showed that females had more accurate cognitive mapping capability than males regardless of ethnic background and academic levels. Generally, subjects with longer affiliation with the university, higher ages and academic levels had less variability in their mapping accuracy. Subjects tended to more accurately map the target locations closer to the reference points than those located farther away, and subjects who were closer to a reference point performed their distance mapping better than those farther away. A correlation analysis reported that male subjects used reference-to-target and subject-to-reference distances more sensitively than females to estimate the locations of the targets. This result indicates that males might have used the reference point-based map scale more strenuously than females.

  • PDF

Renormalization of Thalamic Sub-Regional Functional Connectivity Contributes to Improvement of Cognitive Function after Liver Transplantation in Cirrhotic Patients with Overt Hepatic Encephalopathy

  • Yue Cheng;Jing-Li Li;Jia-Min Zhou;Gao-Yan Zhang;Wen Shen;Xiao-Dong Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.2052-2061
    • /
    • 2021
  • Objective: The role of preoperative overt hepatic encephalopathy (OHE) in the neurophysiological mechanism of cognitive improvement after liver transplantation (LT) remains elusive. This study aimed to explore changes in sub-regional thalamic functional connectivity (FC) after LT and their relationship with neuropsychological improvement using resting-state functional MRI (rs-fMRI) data in cirrhotic patients with and without a history of OHE. Materials and Methods: A total of 51 cirrhotic patients, divided into the OHE group (n = 21) and no-OHE group (n = 30), and 30 healthy controls were enrolled in this prospective study. Each patient underwent rs-fMRI before and 1 month after LT. Using 16 bilateral thalamic subregions as seeds, we conducted a seed-to-voxel FC analysis to compare the thalamic FC alterations before and after LT between the OHE and no-OHE groups, as well as differences in FC between the two groups of cirrhotic patients and the control group. Correction for multiple comparisons was conducted using the false discovery rate (p < 0.05). Results: We found abnormally increased FC between the thalamic sub-region and prefrontal cortex, as well as an abnormally decreased FC between the bilateral thalamus in both OHE and no-OHE cirrhotic patients before LT, which returned to normal levels after LT. Compared with the no-OHE group, the OHE group exhibited more extensive abnormalities prior to LT, and the increased FC between the right thalamic subregions and right inferior parietal lobe was markedly reduced to normal levels after LT. Conclusion: The renormalization of FC in the cortico-thalamic loop might be a neuro-substrate for the recovery of cognitive function after LT in cirrhotic patients. In addition, hyperconnectivity between thalamic subregions and the inferior parietal lobe might be an important feature of OHE. Changes in FC in the thalamus might be used as potential biomarkers for recovery of cognitive function after LT in cirrhotic patients.

The Relationship between a Child's Affective Empathy, a Mother's Empathy, and the Child's Prosocial Behavior (유아의 정서적 공감능력, 어머니의 공감능력 및 유아의 친사회적 행동 간의 관계)

  • Song, Seung Hee;Jahng, Kyung Eun
    • Korean Journal of Child Studies
    • /
    • v.36 no.3
    • /
    • pp.59-75
    • /
    • 2015
  • The purpose of this research is to understand the relationship between children's affective empathy, their mother's cognitive and affective empathy, and children's prosocial behavior; as well as to examine ways of enhancing children's prosocial behavior by analyzing the factors affecting its development. The results of this study may be summarized as follows. First, girls generally had higher levels of empathetic ability and pro-social behavior than boys. Secondly, there was not to be no significant correlation between the children's affective empathetic ability and the mothers' cognitive and affective empathetic abilities. However, there was a significant association between the affective empathy of the children and the mothers' cognitive empathetic abilities with the children's prosocial behavior. Thirdly, both the affective empathy of the children and the mothers' cognitive empathy predicted the level of the children's prosocial behavior.

Beyond Accuracy and Speed: Task Demands and Mathematical Performance

  • Sun, Xuhua Susanna
    • Research in Mathematical Education
    • /
    • v.16 no.3
    • /
    • pp.155-176
    • /
    • 2012
  • It is an important issue to explore classroom environments which are conducive to developing students' mathematical performance. This study explores the effects of different classroom environments (solution-demand and corresponding-time setting) on mathematical performances. Fourteen and eighteen prospective teachers were required to prove a task under different conditions respectively: a) Cognitive demand of multiple-solution corresponding time of three hours, and b) Cognitive demand of a right solution corresponding time of 20 minutes. We used SOLO as the assessment tool for mathematical performance from quality perspective. Significant differences were found in the quantity and quality of mathematical performance. The regular environment focusing on speed and accuracy were found to be directly linked to low levels of performance. The findings above provide implications to the cognitive benefits of multiple-solution demand and corresponding time setting.