• 제목/요약/키워드: Coding Diversity

검색결과 297건 처리시간 0.025초

Analysis of Genes with Alternatively Spliced Transcripts in the Leaf, Root, Panicle and Seed of Rice Using a Long Oligomer Microarray and RNA-Seq

  • Chae, Songhwa;Kim, Joung Sug;Jun, Kyong Mi;Lee, Sang-Bok;Kim, Myung Soon;Nahm, Baek Hie;Kim, Yeon-Ki
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.714-730
    • /
    • 2017
  • Pre-mRNA splicing further increases protein diversity acquired through evolution. The underlying driving forces for this phenomenon are unknown, especially in terms of gene expression. A rice alternatively spliced transcript detection microarray (ASDM) and RNA sequencing (RNA-Seq) were applied to differentiate the transcriptome of 4 representative organs of Oryza sativa L. cv. Ilmi: leaves, roots, 1-cm-stage panicles and young seeds at 21 days after pollination. Comparison of data obtained by microarray and RNA-Seq showed a bell-shaped distribution and a co-lineation for highly expressed genes. Transcripts were classified according to the degree of organ enrichment using a coefficient value (CV, the ratio of the standard deviation to the mean values): highly variable (CVI), variable (CVII), and constitutive (CVIII) groups. A higher index of the portion of loci with alternatively spliced transcripts in a group (IAST) value was observed for the constitutive group. Genes of the highly variable group showed the characteristics of the examined organs, and alternatively spliced transcripts tended to exhibit the same organ specificity or less organ preferences, with avoidance of 'organ distinctness'. In addition, within a locus, a tendency of higher expression was found for transcripts with a longer coding sequence (CDS), and a spliced intron was the most commonly found type of alternative splicing for an extended CDS. Thus, pre-mRNA splicing might have evolved to retain maximum functionality in terms of organ preference and multiplicity.

Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host

  • Khan, Iftikhar Ali;Akhtar, Khalid Pervaiz;Akbar, Fazal;Hassan, Ishtiaq;Amin, Imran;Saeed, Muhammad;Mansoor, Shahid
    • The Plant Pathology Journal
    • /
    • 제32권1호
    • /
    • pp.47-52
    • /
    • 2016
  • Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB), dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB) is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease). Infected scion of Gossypium hirsutum collected from field (the source) was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink) was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt) in the non-coding region between Arich sequence and ${\beta}C1$ gene and insertion of 27 nt in the middle of ${\beta}C1$ ORF. This study may help in investigating molecular basis of resistance in G. arboreum.

Colletotrichum spp. 유래 scytalone dehydratase 유전자의 유전적 다양성 비교 (Genetic Variation of Scytalone Dehydratase Gene in Colletotrichum spp.)

  • 윤여홍;현민우;서동연;김용민;김성환;최창원;김영식
    • 한국균학회지
    • /
    • 제37권2호
    • /
    • pp.155-160
    • /
    • 2009
  • The production of dihydroxynaphthalene (DHN) melanin is known to be essential factor for pathogenicity in Colletotrichum lagenarium. However, the genetic diversity of melanin genes was not much known among Colletotrichum spp. To investigate the variability of melanin gene in Colletotrichum spp. that cause anthracnose on diverse crops including tomato, we cloned and sequenced partial sd, one of DHN melanin genes encoding for scytalone dehydratase, from eight strains of C. coccodes, C. acutatum, C. truncatum C. caricae, and C. musae. The size of PCR-amplified sd ranged 437 bp to 545 bp. The nucleotide sequence identity of sd among the Colletotrichum strains tested varied from 49% to 99%. All of the PCR-amplified sd from eight strains contain an intron and have two exons coding for 122 amino acids. Overall, the size and nucleotide sequence of sd varied among the five Colletotrichum spp. Sequence identity of the predicted scytalone dehydratase protein of 122 amino acids ranged 50 to 99%. Phylogentic analysis based on the sd nucleotide sequences revealed that the five Colletotrichum spp. could be genetically divided.

경부안면형 방선균증에서 분리된 Prevotella intermedia의 유전체 염기서열 해독 (Genome sequence of Prevotella intermedia strain originally isolated from cervicofacial actinomycosis)

  • 문지회;장은영;양석빈;신승윤;류재인;이진용;이재형
    • 미생물학회지
    • /
    • 제55권1호
    • /
    • pp.58-60
    • /
    • 2019
  • 혐기성 그람 음성 세균인 Prevotella intermedia는 사람의 구강 내 정상세균총의 하나이고 다양한 구강 및 전신 질환과 관련이 있다. 본 논문에서는 경부안면형 방선균증으로부터 분리된 P. intermedia ATCC 15032 균주의 유전체 염기서열을 분석하여 보고한다. 이 균주의 유전체는 2,848,426 bp의 크기로 GC 함량은 43.45%이다. 이 유전체 서열 정보는 P. intermedia 종 내에서의 균주 간 유전체 다양성 및 표현형 차이의 유전적 기초를 이해하는데 중요한 정보를 제공할 것이다.

농흉 환자의 흉막액에서 분리된 Bifidobacterium dentium strain ATCC 15424의 유전체 염기서열 해독 (Genome sequence of Bifidobacterium dentium strain ATCC 15424 originally isolated from pleural fluid of an empyema patient)

  • 문지회;김수진;양석빈;장은영;신승윤;이진용;이재형
    • 미생물학회지
    • /
    • 제55권3호
    • /
    • pp.280-282
    • /
    • 2019
  • 본 논문에서는 농흉 환자의 흉막액에서분리된 Bifidobacterium dentium ATCC 15424균주의 유전체 염기서열을 분석하여 보고한다. 이 균주의 유전체는 구강에서 분리된 다른 B. dentium 균주에 존재하지 않는 type III 및 IV secretion system proteins, N-acetylmuramoyl-L-alanine amidase 그리고 PRTRC system protein E를 암호화하는 유전자 등 247개의 ATCC 15424균주 특이적인 유전자들을 포함한다. 이 유전체의 서열 정보는 B. dentium의 자연적 변이와 세균 종 내의 유전체 다양성을 이해하는 데 유용할 것이다.

Caution and Curation for Complete Mitochondrial Genome from Next-Generation Sequencing: A Case Study from Dermatobranchus otome (Gastropoda, Nudibranchia)

  • Do, Thinh Dinh;Choi, Yisoo;Jung, Dae-Wui;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • 제36권4호
    • /
    • pp.336-346
    • /
    • 2020
  • Mitochondrial genome is an important molecule for systematic and evolutionary studies in metazoans. The development of next-generation sequencing (NGS) technique has rapidly increased the number of mitogenome sequences. The process of generating mitochondrial genome based on NGS includes different steps, from DNA preparation, sequencing, assembly, and annotation. Despite the effort to improve sequencing, assembly, and annotation methods of mitogenome, the low quality and/or quantity sequence in the final map can still be generated through the work. Therefore, it is necessary to check and curate mitochondrial genome sequence after annotation for proofreading and feedback. In this study, we introduce the pipeline for sequencing and curation for mitogenome based on NGS. For this purpose, two mitogenome sequences of Dermatobranchus otome were sequenced by Illumina Miseq system with different amount of raw read data. Generated reads were targeted for assembly and annotation with commonly used programs. As abnormal repeat regions present in the mitogenomes after annotation, primers covering these regions were designed and conventional PCR followed by Sanger sequencing were performed to curate the mitogenome sequences. The obtained sequences were used to replace the abnormal region. Following the replacement, each mitochondrial genome was compared with the other as well as the sequences of close species available on the Genbank for confirmation. After curation, two mitogenomes of D. otome showed a typically circular molecule with 14,559 bp in size and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes. The phylogenetic tree revealed a close relationship between D. otome and Tritonia diomea. The finding of this study indicated the importance of caution and curation for the generation of mitogenome from NGS.

Insights into factors affecting synonymous codon usage in apple mosaic virus and its host adaptability

  • Pourrahim, R.;Farzadfar, Sh.
    • Journal of Plant Biotechnology
    • /
    • 제49권1호
    • /
    • pp.46-60
    • /
    • 2022
  • The genetic variability and population structure of apple mosaic virus (ApMV) have been studied; however, synonymous codon usage patterns influencing the survival rates and fitness of ApMV have not been reported. Based on phylogenetic analyses of 52 ApMV coat protein (CP) sequences obtained from apple, pear, and hazelnut, ApMV isolates were clustered into two groups. High molecular diversity in GII may indicate their recent expansion. A constant and conserved genomic composition of the CP sequences was inferred from the low codon usage bias. Nucleotide composition and relative synonymous codon usage (RSCU) analysis indicated that the ApMV CP gene is AU-rich, but G- and U-ending codons are favored while coding amino acids. This unequal use of nucleotides together with parity rule 2 and the effective number of codon (ENC) plots indicate that mutation pressure together with natural selection drives codon usage patterns in the CP gene. However, in this combination, selection pressure plays a more crucial role. Based on principal component analysis plots, ApMV seems to have originated from apple trees in Europe. However, according to the relative codon deoptimization index and codon adaptation index (CAI) analyses, ApMV exhibited the greatest fitness to hazelnut. As inferred from the results of the similarity index analysis, hazelnut has a major role in shaping ApMV RSCU patterns, which is consistent with the CAI analysis results. This study contributes to the understanding of plant virus evolution, reveals novel information about ApMV evolutionary fitness, and helps find better ApMV management strategies.

Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M

  • Cho, Sang-Hyeok;Jeong, Yujin;Lee, Eunju;Ko, So-Ra;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.601-609
    • /
    • 2021
  • Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan-genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.

수직 배열 센서를 이용한 초장거리 대역확산 수중음향통신의 실험 분석 (Experimental analysis of very long range spread spectrum underwater acoustic communication using vertical sensor array)

  • 윤창현;라형인;안정하;김기만;김인수
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.150-158
    • /
    • 2022
  • 본 논문에서는 2021년 9월 동해에서 수행된 초장거리 대역확산 수중음향통신의 해상실험 결과를 제시한다. 8개의 수직 배열 센서를 이용하여 수중음향통신 신호를 수집하였으며, 전송 거리는 160 km로 하였다. 송신 신호로 30 bps의 다중 코드 대역 확산 방식과 100 bps의 처프 대역확산 방식이 사용되었다. 실험 결과 단일 채널에서 채널 부호화 기법이 적용되지 않은 경우에 높은 비트 오류율을 나타내었으나 각 수신 채널에서 프레임 동기화를 수행한 후 신호들에 등이득 조합 다이버시티 기법을 적용하면 비부호화 비트 오류율이 순방향 오류 정정 한계인 0.1 이하로 감소하였다.

Whole genome sequence of Staphylococcus aureus strain RMI-014804 isolated from pulmonary patient sputum via next-generation sequencing technology

  • Ayesha, Wisal;Asad Ullah;Waheed Anwar;Carlos M. Morel;Syed Shah Hassan
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.34.1-34.10
    • /
    • 2023
  • Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.