DOI QR코드

DOI QR Code

Analysis of Genes with Alternatively Spliced Transcripts in the Leaf, Root, Panicle and Seed of Rice Using a Long Oligomer Microarray and RNA-Seq

  • Chae, Songhwa (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Kim, Joung Sug (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Jun, Kyong Mi (GreenGene Biotech Inc.) ;
  • Lee, Sang-Bok (Central Area Crop Breeding Research Division, National Institute of Crop Science) ;
  • Kim, Myung Soon (Genomictree Inc.) ;
  • Nahm, Baek Hie (Division of Bioscience and Bioinformatics, Myongji University) ;
  • Kim, Yeon-Ki (Division of Bioscience and Bioinformatics, Myongji University)
  • Received : 2016.12.11
  • Accepted : 2017.08.24
  • Published : 2017.10.31

Abstract

Pre-mRNA splicing further increases protein diversity acquired through evolution. The underlying driving forces for this phenomenon are unknown, especially in terms of gene expression. A rice alternatively spliced transcript detection microarray (ASDM) and RNA sequencing (RNA-Seq) were applied to differentiate the transcriptome of 4 representative organs of Oryza sativa L. cv. Ilmi: leaves, roots, 1-cm-stage panicles and young seeds at 21 days after pollination. Comparison of data obtained by microarray and RNA-Seq showed a bell-shaped distribution and a co-lineation for highly expressed genes. Transcripts were classified according to the degree of organ enrichment using a coefficient value (CV, the ratio of the standard deviation to the mean values): highly variable (CVI), variable (CVII), and constitutive (CVIII) groups. A higher index of the portion of loci with alternatively spliced transcripts in a group (IAST) value was observed for the constitutive group. Genes of the highly variable group showed the characteristics of the examined organs, and alternatively spliced transcripts tended to exhibit the same organ specificity or less organ preferences, with avoidance of 'organ distinctness'. In addition, within a locus, a tendency of higher expression was found for transcripts with a longer coding sequence (CDS), and a spliced intron was the most commonly found type of alternative splicing for an extended CDS. Thus, pre-mRNA splicing might have evolved to retain maximum functionality in terms of organ preference and multiplicity.

Keywords

References

  1. Anders, S., Reyes, A., and Huber, W. (2012). Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008-2017 https://doi.org/10.1101/gr.133744.111
  2. Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31,166-169 https://doi.org/10.1093/bioinformatics/btu638
  3. Arai-Kichise, Y., Shiwa, Y., Ebana, K., Shibata-Hatta, M., Yoshikawa, H., Yano, M., and Wakasa, K. (2014). Genome-wide DNA polymorphisms in seven rice cultivars of temperate and tropical japonica groups. PLoS One 9, e86312 https://doi.org/10.1371/journal.pone.0086312
  4. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., and Eppig, J.T. (2000). Gene Ontology, tool for the unification of biology. Nat Genet. 25, 25-29 https://doi.org/10.1038/75556
  5. Berget, S.M., Moore, C., and Sharp, P.A. (1977). Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA 74, 3171-3175 https://doi.org/10.1073/pnas.74.8.3171
  6. Burset, M., Seledtsov, I.A., and Solovyev, V.V. (2000). Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res. 28, 4364-4375 https://doi.org/10.1093/nar/28.21.4364
  7. Campbell, M.A., Haas, B.J., Hamilton, J.P., Mount, S.M., and Buell, C.R. (2006). Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis BMC Genomics 7, 327 https://doi.org/10.1186/1471-2164-7-327
  8. Chae, S.H., Kim, J.S., Jun, K.M., Pahk, Y.-M., Kim, M.-J., Lee, S.-B., Park, H.-M., Lee, T.-H., Nahm, B.H., and Kim, Y.-K. (2016). Analysis of representative organ-specific genes and promoters of rice using a 3'ORF-oriented long oligomer microarray. J. Plant Biol. 59, 579-593. https://doi.org/10.1007/s12374-016-0276-0
  9. Che, P., Lall, S., Nettleton, D., and Howell, S.H. (2006). Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol. 141, 620-637 https://doi.org/10.1104/pp.106.081240
  10. Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., and Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840 https://doi.org/10.1126/science.1175371
  11. Chow, L.T., Gelinas, R.E., Broker, T.R., and Roberts, R.J. (1977). An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell 12, 1-8 https://doi.org/10.1016/0092-8674(77)90180-5
  12. Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls, genetic interactions controlling flower development. Nature 353, 31-37 https://doi.org/10.1038/353031a0
  13. Cui P., and Xiong L. (2015). Environmental Stress and Pre-mRNA Splicing. Molecular Plant 8, 1302-1303 https://doi.org/10.1016/j.molp.2015.07.006
  14. Datta, A., and Jinks-Robertson, S. (1995). Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268, 1616-1619 https://doi.org/10.1126/science.7777859
  15. Degenkolbe, T., Do, P.T., Kopka, J., Zuther, E., Hincha, D.K., and Kohl, K.I. (2013). Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS One 22, e63637
  16. Degenkolbe, T., Do, P.T., Zuther, E., Repsilber, D., Walther, D., Hincha, D.K., and Kohl, K.I. (2009). Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol. 69, 133-153 https://doi.org/10.1007/s11103-008-9412-7
  17. Ding, F., Cui, P., Wang, Z.Y., Zhang, S.D., Ali, S., and Xiong, L.M. (2014). Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genomics 15, 431. https://doi.org/10.1186/1471-2164-15-431
  18. Drake, J.W., Charlesworth, B., Charlesworth, D., and Crow, J.F. (1998). Rates of Spontaneous Mutation. Genetics 148, 1667-1686
  19. Duval, M., Hsieh, T. F., Kim, S.Y., and Thomas, T.L. (2002). Molecular characterization of AtNAM, a member of the Arabidopsis NAC domain super family. Plant Mol. Biol. 50, 237-248 https://doi.org/10.1023/A:1016028530943
  20. Eveland, A. L., McCarty, D. R., and Koch, K. E. (2008). Transcript Profiling by 3′-Untranslated Region Sequencing Resolves Expression of Gene Families1, Plant Physiol. 146, 32-44.
  21. Everitt, B. (1998). The Cambridge Dictionary of Statistics Cambridge University Press. Cambridge, UK.
  22. Filichkin, S.A., Priest, H.D., Givan, S.A., Shen, R., Bryant, D.W., Fox, S.E., Wong, W.K., and Mockler, T.C. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 20, 45-58 https://doi.org/10.1101/gr.093302.109
  23. Freeling, M. (2009). Bias in plant gene content following different sorts of duplication, tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433-453 https://doi.org/10.1146/annurev.arplant.043008.092122
  24. Gao, G., Zhong, Y., Guo, A., Zhu, Q., Tang, W., Zheng, W., Gu, X., Wei, L., and Luo, J. (2006). DRTF, a database of rice transcription factors. Bioinformatics 22, 1286-1287 https://doi.org/10.1093/bioinformatics/btl107
  25. Glisovic, T., Bachorik, J.L., Yong, J., and Dreyfuss, G. (2008). RNAbinding proteins and post-transcriptional gene regulation. FEBS Letters 582, 1977-1986 https://doi.org/10.1016/j.febslet.2008.03.004
  26. Gordon, S.P., Priest, H., Des Marais, D.L. Schackwitz, W., Figueroa, M., Martin, J., Bragg, J.N., Tyler, L., Lee, C.R., Bryant, D., et al., (2014). Genome diversity in Brachypodium distachyon, deep sequencing of highly diverse inbred lines. Plant J. 79, 361-374. https://doi.org/10.1111/tpj.12569
  27. Huang, H.D., Horng, J.T., Lee, C.C., and Liu, B.J. (2003). ProSplicer, a database of putative alternative splicing information derived from protein, mRNA and expressed sequence tag sequence data. Genome Biol. 4, R29 https://doi.org/10.1186/gb-2003-4-4-r29
  28. Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). CD-HIT Suite, a web server for clustering and comparing biological sequences. Bioinformatics 26, 680-682 https://doi.org/10.1093/bioinformatics/btq003
  29. Huang, X., Kurata, N., Wei, X., Wang, Z., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., and Li, W. (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501 https://doi.org/10.1038/nature11532
  30. Itoh, J., Sato, Y., Sato, Y., Hibara, K., Shimizu-Sato, S., Kobayashi, H., Takehisa, H., Sanguinet, K.A., Namiki, N., and Nagamura, Y. (2016). Genome-wide analysis of spatiotemporal gene expression patterns during early embryogenesis in rice. Development 143, 1217-1227 https://doi.org/10.1242/dev.123661
  31. Jiao, Y., Tausta, S.L., Gandotra, N., Sun, N., Liu, T., Clay, N.K., Ceserani, T., Chen, M., Ma, L., and Holford, M. (2009). A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat. Genet. 41, 258-263 https://doi.org/10.1038/ng.282
  32. Jung, K.-H., Bartley, L.E., Cao, P., Canlas, P.E., and Ronald, P.C. (2008). Analysis of alternatively spliced rice transcripts using microarray data. Rice 2, 9020
  33. Kim, N., Abdulovic, A.L., Gealy, R., Lippert, M.J., and Jinks-Robertson, S. (2007). Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst). 6, 1285-1296 https://doi.org/10.1016/j.dnarep.2007.02.023
  34. Kim, S.G., Kim, S.Y., and Park, C.M. (2007a). A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226, 647-654 https://doi.org/10.1007/s00425-007-0513-3
  35. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). TopHat2, accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36 https://doi.org/10.1186/gb-2013-14-4-r36
  36. Kimura, M. (1968). Evolutionary rate at the molecular level. Nature. 217, 624-626 https://doi.org/10.1038/217624a0
  37. Koscielny, G., Le Texier, V., Gopalakrishnan, C., Kumanduri, V., Riethoven, J., Nardone, F., Stanley, E., Fallsehr, C., Hofmann, O., and Kull, M. (2009). ASTD: the alternative splicing and transcript diversity database. Genomics 93, 213-220 https://doi.org/10.1016/j.ygeno.2008.11.003
  38. Kreps, J.A., Wu, Y., Chang, H.S., Zhu, T., Wang, X., and Harper, J.F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129-2141 https://doi.org/10.1104/pp.008532
  39. Kriventseva, E.V., Koch, I., Apweiler, R., Vingron, M., Bork, P., Gelfand, M.S., and Sunyaev, S. (2003). Increase of functional diversity by alternative splicing. Trends in Genet. 19, 124-128 https://doi.org/10.1016/S0168-9525(03)00023-4
  40. Kyndt, T., Denil, S., Haegeman, A., Trooskens, G., De Meyer, T., Van Criekinge, W., and Gheysen, G. (2012). Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. J. Exp. Bot. 63, 2141-2157 https://doi.org/10.1093/jxb/err435
  41. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 https://doi.org/10.1186/gb-2009-10-3-r25
  42. Lenka, S.K., Katiyar, A., Chinnusamy, V., and Bansal, K.C. (2011). Comparative analysis of drought‐responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotech. J. 9, 315-327 https://doi.org/10.1111/j.1467-7652.2010.00560.x
  43. Lewis, B.P., Green, R.E., and Brenner, S.E. (2003). Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl. Acad. Sci. USA 100, 189-192 https://doi.org/10.1073/pnas.0136770100
  44. Lindahl, T., and Nyberg, B. (1972). Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610-3618 https://doi.org/10.1021/bi00769a018
  45. Liu, H.L., Xu, Y.Y., Xu, Z.H., and Chong, K. (2007). A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev. Genes Evol. 217, 629-637 https://doi.org/10.1007/s00427-007-0173-0
  46. Liu, S.-L., Baute, G.J., and Adams, K.L. (2011). Organ and cell type- specific complementary expression patterns and regulatory neofunctionalization between duplicated genes in Arabidopsis thaliana. Genome Biol. Evol. 3, 1419-1436 https://doi.org/10.1093/gbe/evr114
  47. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262
  48. Lomelin, D., Jorgenson, E., and Risch, N. (2010). Human genetic variation recognizes functional elements in noncoding sequence Genome Res. 20, 311-319 https://doi.org/10.1101/gr.094151.109
  49. Lorkovic, Z.J., Lehner, R., Forstner, C., and Barta, A. (2005). Evolutionary conservation of minor U12-type spliceosome between plants and animals. RNA 11, 1095-1107 https://doi.org/10.1261/rna.2440305
  50. Lu, S.-J., Wei, H., Wang, Ya., Wang, H.-M., Yang, R.-F., Zhang, X.-B., and Tu, J.-M. (2012). Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.). Plant Mol. Biol. Rep. 30, 1461-1469 https://doi.org/10.1007/s11105-012-0468-9
  51. Lunde, B.M., Moore, C., and Varani, G. (2007). RNA-binding proteins, modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479- 490 https://doi.org/10.1038/nrm2178
  52. Ma, L., Chen, C., Liu, X., Jiao, Y., Su, N., Li, L., Wang, X., Cao, M., Sun, N., Zhang, X., et al. (2005). A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res. 15, 1274-1283 https://doi.org/10.1101/gr.3657405
  53. Marquardt, S., Raitskin, O., Wu, Z., Liu, F., Sun, Q., and Dean, C. (2014). Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol. Cell 54, 156-165 https://doi.org/10.1016/j.molcel.2014.03.026
  54. Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stressresponsive genes. Mol. Genet. Genom. 283, 185-196. https://doi.org/10.1007/s00438-009-0506-y
  55. McCullagh, P., and Nelder, J.A. (1989). Generalized linear models, 2nd ed. (Chapman & Hall/CRC, Boca Raton, FL.).
  56. Minh-Thu, P.T., Hwang, D.J., Jeon, J.S., Nahm, B.H., and Kim, Y.K. (2013). Transcriptome analysis of leaf and root of rice seedling to acute dehydration. Rice 6, 38
  57. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Meth. 5, 621-628 https://doi.org/10.1038/nmeth.1226
  58. Mount, S.M., and Steize, J.A. (1981). Sequence of U1 RNA from Drosophila melanogaster, implications for U1 secondary structure and possible involvement in splicing. Nucleic Acids Res. 9, 6351-6383 https://doi.org/10.1093/nar/9.23.6351
  59. Nookaew, I., Papini, M., Pornputtapong, N., Scalcinati, G., Fagerberg, L., Uhlén, M., and Nielsen, J. (2012). A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays, a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 10084-10097 https://doi.org/10.1093/nar/gks804
  60. Pan, Q., Shai, O., Lee, L.J., Frey, B.J., and Blencowe, B.J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413-1415 https://doi.org/10.1038/ng.259
  61. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203 https://doi.org/10.1038/35012103
  62. Perez-Rodriguez, P., Riano-Pachon, D.M., Correa, L.G., Rensing, S.A., Kersten, B., and Mueller-Roeber, B. (2010). PlnTFDB, updated content and new features of the plant transcription factor database. Nucleic Acids Res. 38, D822-7 https://doi.org/10.1093/nar/gkp805
  63. Petryszak, R., Burdett, T., Fiorelli, B., Fonseca, N.A., Gonzalez-Porta, M., Hastings, E., Huber, W., Jupp, S., Keays, M., Kryvych, N., et al. (2014). Expression Atlas update--a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments. Nucleic Acids Res. 42, D926-32 https://doi.org/10.1093/nar/gkt1270
  64. Price, A.H., Cairns, J.E., Horton, P., Jones, H.G., and Griffiths, H. (2002). Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach, progress and new opportunities to integrate stomatal and mesophyll responses. J. Exp. Bot. 53, 989-1004 https://doi.org/10.1093/jexbot/53.371.989
  65. Priya, P., and Jain, M. (2013). RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cisregulatory element and mutant information to facilitate gene function analysis. Database (Oxford) 2013, bat027.
  66. Project, International Rice Genome Sequencing (2005). The mapbased sequence of the rice genome. Nature 436, 793-800 https://doi.org/10.1038/nature03895
  67. Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755-1767 https://doi.org/10.1104/pp.103.025742
  68. Rabello, A.R., Guimaraes, C.M., Rangel, P.H., da Silva, F.R., Seixas, D., de Souza, E., Brasileiro, A.C., Spehar, C.R., Ferreira, M.E., and Mehta, A. (2008). Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics 9, 485 https://doi.org/10.1186/1471-2164-9-485
  69. Rensink, W.A., and Buell, C.R. (2005). Microarray expression profiling resources for plant genomics. Trends Plant Sci. 10, 603-609 https://doi.org/10.1016/j.tplants.2005.10.003
  70. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 https://doi.org/10.1093/nar/gkv007
  71. Salunkhe, A.S., Poornima, R., Prince, K.S.J., Kanagaraj, P., Sheeba, J.A., Amudha, K., Suji, K., Senthil, A., and Babu, R.C. (2011). Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis. Mol. Biotechnol. 49, 90-95 https://doi.org/10.1007/s12033-011-9382-x
  72. Sarkar, N.K., Kim, Y., and Grover, A. (2014). Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol. Biol. 84,125-143 https://doi.org/10.1007/s11103-013-0123-3
  73. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., and Sakurai, T. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high‐salinity stresses using a full‐length cDNA microarray. Plant J. 31, 279-292 https://doi.org/10.1046/j.1365-313X.2002.01359.x
  74. Seo, P.J. Park, M.J. Lim, M.H. Kim, S.G. Lee, M. Baldwin, I.T., and Park, C.M. (2011). A self-regulatory circuit of CIRCADIANCLOCKASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 2011, 24, 2427-2442
  75. Severin, A.J., Woody, J.L., Bolon, Y.T., Joseph. B,, Diers, B.W., Farmer, A.D., Muehlbauer, G.J., Nelson, R.T., Grant, D., Specht, J.E., et al., (2010). RNA-Seq Atlas of Glycine max, a guide to the soybean transcriptome. BMC Plant Biol. 10,160 https://doi.org/10.1186/1471-2229-10-160
  76. Shang X., Cao Y., and Ma L. (2017). Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. Int. J. Mol. Sci. 2017, 18, 432 https://doi.org/10.3390/ijms18020432
  77. Shankar, A., Srivastava, A.K., Yadav, A.K., Sharma, M., Pandey, A., Raut, V.V., Das, M.K., Suprasanna, P., and Pandey, G.K. (2014). Whole genome transcriptome analysis of rice seedling reveals alterations in Ca 2 ion signaling and homeostasis in response to Ca 2 deficiency. Cell Calcium 55, 155-165 https://doi.org/10.1016/j.ceca.2014.02.011
  78. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature, differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217-223 https://doi.org/10.1016/S1369-5266(00)00067-4
  79. Sperotto, R.A., Ricachenevsky, F.K., Duarte, G.L., Boff, T., Lopes, K.L., Sperb, E.R., Grusak, M.A., and Fett, J.P. (2009). Identification of upregulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230, 985-1002 https://doi.org/10.1007/s00425-009-1000-9
  80. Su, N., He, K., Jiao, Y., Chen, C., Zhou, J., Li, L., Bai, S., Li, X., and Deng, X.W. (2007). Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Mol. Biol. 63, 337-349 https://doi.org/10.1007/s11103-006-9092-0
  81. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protocols 7, 562-578 https://doi.org/10.1038/nprot.2012.016
  82. Tsuji, H., Taoka, K., and Shimamoto, K. (2013). Florigen in rice, complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr. Opin. Plant Biol. 16, 228-235 https://doi.org/10.1016/j.pbi.2013.01.005
  83. Wakasa, Y., Oono, Y., Yazawa, T., Hayashi, S., Ozawa, K., Handa, H., Matsumoto, T., and Takaiwa, F. (2014). RNA sequencing-mediated transcriptome analysis of rice plants in endoplasmic reticulum stress conditions. BMC Plant Biol. 14, 101 https://doi.org/10.1186/1471-2229-14-101
  84. Wang, L., Xie, W., Chen, Y., Tang, W., Yang, J., Ye, R., Liu, L., Lin, Y., Xu, C., Xiao, J., and Zhang, Q. (2010). A dynamic gene expression atlas covering the entire life cycle of rice. Plant J. 61, 752-766 https://doi.org/10.1111/j.1365-313X.2009.04100.x
  85. Wang, Z., Wu, Z., Raitskin, O., Sun, Q., and Dean, C. (2014). Antisense-mediated FLC transcriptional repression requires the p- TEFb transcription elongation factor. Proc. Natl. Acad. Sci. USA 111, 7468-7473 https://doi.org/10.1073/pnas.1406635111
  86. Wegmann, D., Dupanloup, I., and Excoffier, L. (2008). Width of gene expression profile drives alternative splicing. PLoS One 3, e3587 https://doi.org/10.1371/journal.pone.0003587
  87. Yamamoto, T., Nagasaki, H., Yonemaru, J., Ebana, K., Nakajima, M., Shibaya, T., and Yano, M. (2010). Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11, 267 https://doi.org/10.1186/1471-2164-11-267
  88. Yang, J., Chen, X., Zhu, C., Peng, X., He, X., Fu, J., Ouyang, L., Bian, J., Hu, L., Sun, X., et al. (2015). RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics 16, 959 https://doi.org/10.1186/s12864-015-2141-9
  89. Yang, S.Y., Hao, D.L., Song, Z.Z., Yang, G.Z., Wang, L., Su, Y.H. (2015). RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies. Gene 555, 305-317 https://doi.org/10.1016/j.gene.2014.11.021
  90. Yuan, J., Chen, D., Ren, Y., Zhang, X., and Zhao, J. (2008). Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol. 146, 1637-1650 https://doi.org/10.1104/pp.107.110304
  91. Yun, M.-S., Umemoto, T., and Kawagoe, Y. (2011). Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiol. 52, 1068-1082 https://doi.org/10.1093/pcp/pcr058
  92. Yun, D., Liang, W., Dreni, L., Yin, C., Zhou, Z., Kater, M.M., and Zhang, D. (2013). OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Mol. Plant 6, 743-756 https://doi.org/10.1093/mp/sst003
  93. Zeeberg, B.R., Feng, W., Wang, G., Wang, M.D., Fojo, A.T., Sunshine, M., Narasimhan, S., Kane, D.W., Reinhold, W.C., and Lababidi, S. (2003). GoMiner, a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4, R28 https://doi.org/10.1186/gb-2003-4-4-r28
  94. Zhang, G., Guo, G., Hu, X., Zhang, Y., Li, Q., Li, R., Zhuang, R., Lu, Z., He, Z., Fang, X., et al. (2010). Deep RNA sequencing at single basepair resolution reveals high complexity of the rice transcriptome. Genome Res. 20, 646-654 https://doi.org/10.1101/gr.100677.109
  95. Zhu, Y., Hultin-Rosenberg, L., Forshed, J., Branca, R.M., Orre, L.M., and Lehtio, J. (2014). SpliceVista, a tool for splice variant identification and visualization in shotgun proteomics data. Mol. Cell Proteomics 13, 1552-1562 https://doi.org/10.1074/mcp.M113.031203
  96. Zhai, R., Feng, Y., Wang, H., Zhan, X., Shen, X., Wu, W., Zhang, Y., Chen, D., Dai, G., Yang, Z., et al. (2013). Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics 14, 19 https://doi.org/10.1186/1471-2164-14-19
  97. Zhao, S., Fung-Leung, W.-P., Bittner, A., Ngo, K., and Liu, X. (2014). Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9, e78644. https://doi.org/10.1371/journal.pone.0078644

Cited by

  1. A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice vol.41, pp.8, 2017, https://doi.org/10.14348/molcells.2018.0203
  2. Expanding Alternative Splicing Identification by Integrating Multiple Sources of Transcription Data in Tomato vol.10, pp.None, 2017, https://doi.org/10.3389/fpls.2019.00689
  3. Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Sectorization in Cryphonectria parasitica vol.42, pp.4, 2017, https://doi.org/10.14348/molcells.2019.0019
  4. Strigolactone Signaling Genes Showing Differential Expression Patterns in Arabidopsis max Mutants vol.8, pp.9, 2019, https://doi.org/10.3390/plants8090352
  5. Distinct Evolutionary Origins of Intron Retention Splicing Events in NHX1 Antiporter Transcripts Relate to Sequence Specific Distinctions in Oryza Species vol.11, pp.None, 2017, https://doi.org/10.3389/fpls.2020.00267
  6. TALEN-mediated bar-knockout Rice Production and Transcriptome Profiling vol.9, pp.1, 2017, https://doi.org/10.9787/pbb.2021.9.1.32
  7. The OsERF115/AP2EREBP110 Transcription Factor Is Involved in the Multiple Stress Tolerance to Heat and Drought in Rice Plants vol.22, pp.13, 2017, https://doi.org/10.3390/ijms22137181