• Title/Summary/Keyword: Code Optimization

Search Result 594, Processing Time 0.032 seconds

Optimal Supersonic Diffuser Design of Integrated Rocket Ramjet Engine (IRR형 Ramjet Intake 초음속 확산부 형상 최적설계)

  • 민병영;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • Optimal supersonic diffuser shape of integrated rocket ramjet engine was derived which maximizes the total pressure recovery. Mass flux is considered as a design constraint and the second oblique shock angle of the external ramp, the cowl-lip angle and the throat area are selected as design variables. Refined response surface method through design space transformation technique was developed and employed, and high confidence level of the regression model could be obtained. Genetic algorithm was implemented for both system optimizer and subspace regression model optimization. Virtual nozzle was located at the end of throat to adjust the back pressure. With only 20 aerodynamic analyses, optimal supersonic diffuser shape which has 14% improved total pressure recovery characteristics was successfully designed.

Optimization of optical design for Eye Glass Display using hybrid aspheric lens (Hybrid 비구면 렌즈를 이용한 Eye glass Display용 광학시스템의 최적화)

  • Kim, T.H.;Park, K.B.;Park, Y.S.;Kim, H.W.;Seok, J.M.;Moon, H.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.123-126
    • /
    • 2005
  • Eye Glass Display (EGD) with microdisplay to realize the virtual display can make the large screen, so virtual image has been developed by using microdisplay panel. This paper shows study of low cost lens design and simulation for microdisplay system with 0.6"LCoS panel. Lens design optimized consider to spherical aberration, astigmatism, distortion, and chromatic aberration. Code V is used and it designed an aspheric lens about exit pupil 6mm, eye relief 20mm and 35 degree of field of view (FOV). With the application this aspheric lens to liquid crystal on silicon (LCOS) type's microdisplay, virtual image showed 50 inch at 2m. One side of the aspheric lens was constituted from diffractive optical element (DOE) for the improvement in a performance. It had less than 2.5% of distortion value and modulation transfer function in axial had 20% of resolution with 32 lp/mm spatial frequency. The optical system is suitable for display of 15.6 mm-diagonal with SVGA.

  • PDF

Optimization of Casting Design for Automobile Transmission Gear Housing by 3D Filling and Solidification Simulation in Local Squeeze Diecasting Process (국부가압 다이캐스팅 공정에서 3차원 유동 및 응고해석을 통한 자동차 변속기 Gear Housing의 주조방안 설계 최적화)

  • Park, Jin-Young;Kim, Eok-Soo;Park, Yong-Ho;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.668-675
    • /
    • 2006
  • In the partial squeeze casting process, the filling behavior of liquid metal and solidification pattern in thick area have significant influence on the quality of casting products and die life. For the optimal casting design of automobile transmission gear housing, various analyses were performed in this study by using computer simulation code, MAGMAsoft and the simulation results were compared and analyzed with experimental results. By air pressure criteria, internal porosities caused by air entrap during the mold filling were predicted and reduced remarkably by modification of gating system. Also, optimal squeeze-time lag to apply partial squeeze pin in thick area was calculated and the castings was free from shrinkage defects with the result of solidification analysis. Consequently, casting design for automobile transmission gear housing was optimized and approved by Computer Tomography.

Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance

  • Schoeftner, J.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.417-432
    • /
    • 2011
  • The present paper is devoted to vibration canceling and shape control of piezoelastic slender beams. Taking into account the presence of electric networks, an extended electromechanically coupled Bernoulli-Euler beam theory for passive piezoelectric composite structures is shortly introduced in the first part of our contribution. The second part of the paper deals with the concept of passive shape control of beams using shaped piezoelectric layers and tuned inductive networks. It is shown that an impedance matching and a shaping condition must be fulfilled in order to perfectly cancel vibrations due to an arbitrary harmonic load for a specific frequency. As a main result of the present paper, the correctness of the theory of passive shape control is demonstrated for a harmonically excited piezoelelastic cantilever by a finite element calculation based on one-dimensional Bernoulli-Euler beam elements, as well as by the commercial finite element code of ANSYS using three-dimensional solid elements. Finally, an outlook for the practical importance of the passive shape control concept is given: It is shown that harmonic vibrations of a beam with properly shaped layers according to the presented passive shape control theory, which are attached to an resistor-inductive circuit (RL-circuit), can be significantly reduced over a large frequency range compared to a beam with uniformly distributed piezoelectric layers.

Design of Bytecode Optimization Framework (바이트코드 최적화 프레임워크의 설계)

  • Kim, Young-Kook;Kim, Kyung-Soo;Kim, Ki-Tae;Jo, Sun-Moon;Yoo, Weon-Hee
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.297-300
    • /
    • 2004
  • 자바는 객체지향 언어이고 바이트코드로 번역 이후에는 플랫폼에 독립적으로 가상머신에 의해 실행될 수 있기 때문에 소프트웨어 개발과 유지보수에 많은 장점을 갖는다. 이러한 특징으로 인해 플랫폼에 독립적인 소프트웨어 개발에는 자바가 많이 이용된다. 그러나 바이트코드로 작성된 프로그램은 가상기계에서 인터프리터 방식으로 수행된다. 때문에 프로그램의 실행속도가 느리게 실행되는 문제점을 가지고 있다. 실행속도의 문제점을 해결하기 위한 여러 가지 방법들이 연구가 진행중이다. 본 논문은 자바 바이트코드가 가상기계에서 인터프리터 방식으로 수행할 때 바이트코드의 크기를 줄여 해석하는 부담을 줄이기 위해서 바이트 코드를 최적화하는 프레임워크를 구성한다. 프레임워크를 이용하여 바이트코드를 3주소 형태의 CTOC-T(Class To Optimizer Classes-Three Address Code)로 변환하여 프로그램을 분석을 할 수 있다. 또한 CTOC-T는 3주소 형태이므로 3주소 최적화 기법을 적용하여 최적화된 바이트코드를 생성하는 프레임워크를 설계한다.

  • PDF

CPFD Simulation for Fast Pyrolysis Reaction of Biomass in a Conical Spouted Bed Reactor using Multiphase-particle in Cell Approach (Multiphase-Particle in Cell 해석 기법을 이용한 원뿔형 분사층 반응기 내 바이오매스의 급속열분해 반응 전산해석)

  • Park, Hoon Chae;Choi, Hang Seok
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.7
    • /
    • pp.685-696
    • /
    • 2017
  • This study focuses on computational particle fluid dynamics (CPFD) modeling for the fast pyrolysis of biomass in a conical spouted bed reactor. The CPFD simulation was conducted to understand the hydrodynamics, heat transfer, and biomass fast pyrolysis reaction of the conical spouted bed reactor and the multiphase-particle in cell (MP-PIC) model was used to investigate the fast pyrolysis of biomass in a conical spouted bed reactor. A two-stage semi-global kinetics model was applied to model the fast pyrolysis reaction of biomass and the commercial code (Barracuda) was used in simulations. The temperature of solid particles in a conical spouted bed reactor showed a uniform temperature distribution along the reactor height. The yield of fast pyrolysis products from the simulation was compared with the experimental data; the yield of fast pyrolysis products was 74.1wt.% tar, 17.4wt.% gas, and 8.5wt.% char. The comparison of experimental measurements and model predictions shows the model's accuracy. The CPFD simulation results had great potential to aid the future design and optimization of the fast pyrolysis process for biomass.

Neutronics design of VVER-1000 fuel assembly with burnable poison particles

  • Tran, Hoai-Nam;Hoang, Van-Khanh;Liem, Peng Hong;Hoang, Hung T.P.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1729-1737
    • /
    • 2019
  • This paper presents neutronics design of VVER-1000 fuel assembly using burnable poison particles (BPPs) for controlling excess reactivity and pin-wise power distribution. The advantage of using BPPs is that the thermal conductivity of BPP-dispersed fuel pin could be improved. Numerical calculations have been conducted for optimizing the BPP parameters using the MVP code and the JENDL-3.3 data library. The results show that by using $Gd_2O_3$ particles with the diameter of $60{\mu}m$ and the packing fraction of 5%, the burnup reactivity curve and pin-wise power distribution are obtained approximately that of the reference design. To minimize power peaking factor (PPF), total BP amount has been distributed in a larger number of fuel rods. Optimization has been conducted for the number of BPP-dispersed rods, their distribution, BPP diameter and packing fraction. Two models of assembly consisting of 18 BPP-dispersed rods have been selected. The diameter of $300{\mu}m$ and the packing fraction of 3.33% were determined so that the burnup reactivity curve is approximate that of the reference one, while the PPF can be decreased from 1.167 to 1.105 and 1.113, respectively. Application of BPPs for compensating the reduction of soluble boron content to 50% and 0% is also investigated.

Simulation and design of individual neutron dosimeter and optimization of energy response using an array of semiconductor sensors

  • Noushinmehr, R.;Moussavi zarandi, A.;Hassanzadeh, M.;Payervand, F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.293-302
    • /
    • 2019
  • Many researches have been done to develop and improve the performance of personal (individual) dosimeter response to cover a wide of neutron energy range (from thermal to fast). Depending on the individual category of the dosimeter, the semiconductor sensor has been used to simplify and lightweight. In this plan, it's very important to have a fairly accurate counting of doses rate in different energies. With a general design and single-sensor simulations, all optimal thicknesses have been extracted. The performance of the simulation scheme has been compared with the commercial and laboratory samples in the world. Due to the deviation of all dosimeters with a flat energy response, in this paper, has been used an idea of one semi-conductor sensor to have the flat energy-response in the entire neutron energy range. Finally, by analyzing of the sensors data as arrays for the first time, we have reached a nearly flat and acceptable energy-response. Also a comparison has been made between Lucite-PMMA ($H_5C_5O_2$) and polyethylene-PE ($CH_2$) as a radiator and $B_4C$ has been studied as absorbent. Moreover, in this paper, the effect of gamma dose in the dosimeter has been investigated and shown around the standard has not been exceeded.

A SE Approach to Predict the Peak Cladding Temperature using Artificial Neural Network

  • ALAtawneh, Osama Sharif;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2020
  • Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to predict the system response of a nuclear power plant either under normal operation or accident condition. However, this approach may sometimes be rather time consuming particularly for design and optimization problems. To expedite the decision-making process data-driven models can be used to deduce the statistical relationships between inputs and outputs rather than solving physics-based models. Compared to the traditional approach, data driven models can provide a fast and cost-effective framework to predict the behavior of highly complex and non-linear systems where otherwise great computational efforts would be required. The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a metric for the successful implementation of FLEX strategies under extended station black out. To achieve this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized using the talos tool.

Interference Analysis Among Waveforms and Modulation Methods of Concurrently Operated Pulse Doppler Radars (단일 플랫폼에서 동시 운용되는 펄스 도플러 레이다의 파형 및 변조 방식간의 간섭 분석)

  • Kim, Eun Hee;Ryu, Seong Hyun;Kim, Han Saeng;Lee, Ki Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • As the application field of radar is expanded and the bandwidth increases, the number of radar sensors operating at the same frequency is continuously increasing. In this paper, we propose a method of analyzing interference when two pulse doppler radars are operated at the same frequency with different waveform which are designed independently. In addition, we show that even for a previously designed LFM waveforms, the interference can be suppressed without affecting the performance by changing the sign of the frequency slope by increasing/decreasing, or by modulating the pulses by the different codes. The interference suppression by different slopes is more effective for similar waveform and the suppression by the codes increases as the number of pulses increases. We expect this result can be extended to the cases where multiple radars are operated at the same frequency.