References
- D. K. Young, "Nuclear reactor vessel water level prediction during severe accidents using deep neural networks", nuclear Engineering and Technology, volume 51, 2019.
- D. K. Kyung, "Wall temperature prediction at critical heat flux using a machine learning model", Annals of Nuclear Energy, volume 141, 2020.
- Z. Lin, X. Liu, L. Lao, H. Liu, "Prediction of two-phase flow patterns in upward inclined pipes via deep learning", Energy, Volume 210, 2020.
- S. N. Ahsan and S. A. Hassan, "Machine learning based fault prediction system for the primary heat transport system of CANDU type pressurized heavy water reactor," 2013 International Conference on Open Source Systems and Technologies, Lahore, 2013.
- V. Pinheiro, M. Santos, F. Desterro, R. Schirru, C. Márcio, N. A. Pereira, "Nuclear Power Plant accident identification system with "don't know" response capability: Novel deep learning-based approaches", Annals of Nuclear Energy, Volume 137, 2020.
- M. G. Fernandez, A. Tokuhiro, K. Welter, Q. Wu, "Nuclear energy system's behavior and decision making using machine learning", Nuclear Engineering and Design, Volume 324, 2017.
- KAERI, "MARS Code Manual," KAERI/TR-2812/2004 Korea Atomic Energy Research Institute, Daejon, 2009.
- A. Kossiakoff, Systems Engineering Principles and Practice 2ndEdition, John Wiley &sons, p139, 2011.
- USNRC, "Regulatory Guide 1.105," US Nuclear Regulatory Commission, 1999.
- B.M. Adams, L.E. Bauman, W.J. Bohnhoff, K.R. Dalbey, M.S. Ebeida, J.P. Eddy, M.S. Eldred, P.D. Hough, K.T. Hu, J.D Jakeman, J.A. Stephens, L.P. Swiler, D.M. Vigil, and, T.M. Wildey, "Dakota, A Multilevel Parallel Object Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.12 User's Manual," Sandia Technical Report SAND2020-5001 (2020).
- Y. Kozmenkov, M. Jobst, S. Kliem, F. Schaefer and P. Wilhelm, "Statistical analysis of the early phase of SBO accidents for PWR," Nuclear Engineering and Design, pp.131-141 (2017).
- J. R. T. de Sousa, A. Diab "Best Estimate Plus Uncertainty Analysis for SBO", Presented at the 2019 ANS Winter Meeting & Expo, 2019.
- K. H. Kang, C. H. Song, B. D. Chung, K. D. Kim, S. W. Lee, K. Y. Choi, B. J. Yun, J. J. Jeong, Y. S. Bang, Y. H. Ryu, H. G. Kim, C. J. Choi, C. H. Ban, S. K. Sim, "Development of a Phenomena Identification ranking Table (PIRT) for a Station Blackout (SBO) Accident of the APR1400", Transaction of the Korean Nuclear Society Autumn Meeting, Gyeongju (2013).
- J. Bergstra, Y. Bengio, "Random Search for Hyper-Parameter Optimization," Journal of Machine Learning Research, volume 13, pp. 281-305, February 2012.
- Autonomio talos [Computer software] (2019), http://github.com/autonomio/talos.