• Title/Summary/Keyword: Code Complexity

Search Result 589, Processing Time 0.029 seconds

Low-Cost Remote Power-Quality-Failure Monitoring System using Android APP and MCU (안드로이드 앱과 MCU를 이용한 저가형 원격 전원품질이상 감시 시스템)

  • Lim, Ho-Kyoun;Kim, Seo-Hwi;Lee, Seung-Hyeon;Choe, Sangho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.144-155
    • /
    • 2013
  • This paper presents a low-cost remote power-quality-failure monitoring system (RPMS) using Android App and TI MCU (micro-controller unit), which is appliable to a micro-grid. The designed RPMS testbed consists of smart nodes, a server, and Android APPs. Especially, the C2000-series MCU-based RPMS smart node that is low-cost compared to existing monitoring systems has both a signal processing function for power signal processing and a data transmission function for power-quality monitoring data transmission. The signal processing function implements both a wavelet-based power failure detection algorithm including sag, swell, and interruption, and a FFT-based power failure detection algorithm including harmonics such that reliable and real-time power quality monitoring is guaranteed. The data transmission function implements a low-complexity RPMS transmission protocol and defines a simple data format (msg_Diag) for power monitoring message transmission. We may watch the monitoring data in real time both at a server and Android phone Apps connected to the WiFi network (or WAN). We use RS-232 (or Bluetooth) as the wired (or wireless) communication media between a server and nodes. We program the RPMS power-quality-failure monitoring algorithm using C language in the CCS (Code Composer Studio) 3.3 environment.

Thermal Stress Analysis of the Disposal Canister for Spent PWR Nuclear Fuels (가압경수로 고준위폐기물 처분용기의 열응력 해석)

  • 권영주;하준용;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500 m underground is carried out for the basic design of the canister. Since the nuclear fuel disposal usually emits much heat, a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences the thermal load due to the heat generation of spent nuclear fuels in the basket. Hence, in this paper the thermal stress analysis is executed using the finite element method. The finite clement code Eot the analysis Is not written directly, but a commercial code, NISA, is used because of the complexity of the structure and the large number of elements required for the analysis. The analysis result shows that even though the thermal stress is added to the stress generated by the hydrostatic underground water pressure and the swelling pressure of the bentonite buffer, the total stress is still smaller than the yield stress of the cast iron. Hence, the canister is still structurally safe when the thermal loads we included in the external loads applied on the canister.

Performance Evaluation of Bit Error Resilience for Pixel-domain Wyner-Ziv Video Codec with Frame Difference Residual Signal (화면 간 차이 신호에 대한 화소 영역 위너-지브 비디오 코덱의 비트 에러 내성 성능 평가)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.20-28
    • /
    • 2012
  • DVC(Distributed Video Coding) technique is a new paradigm, which is based on the Slepian-Wolf and Wyner-Ziv theorems. DVC offers not only flexible partitioning of the complexity between the encoder and decoder, but also robustness to channel errors due to intrinsic joint source-channel coding. Many conventional research works have been focused on the light video encoder and its rate-distortion performance improvement. However, in this paper, we propose a new DVC codec which is effectively applicable for error-prone environment. The proposed method adopts a quantiser without dead-zone and symmetric Gray code around zero value. Through computer simulations, the proposed method is evaluated by the bit errors position as well as the number of burst bit errors. Additionally, it is shown that the maximum and minimum transmission rate for the given application can be linearly determined by the number of bit errors.

S-FEAR: Secure-Fuzzy Energy Aware Routing Protocol for Wireless Sensor Networks

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1436-1457
    • /
    • 2018
  • Secure routing services in Wireless Sensor Networks (WSNs) are essential, especially in mission critical fields such as the military and in medical applications. Additionally, they play a vital role in the current and future Internet of Things (IoT) services. Lightness and efficiency of a routing protocol are not the only requirements that guarantee success; security assurance also needs to be enforced. This paper proposes a Secure-Fuzzy Energy Aware Routing Protocol (S-FEAR) for WSNs. S-FEAR applies a security model to an existing energy efficient FEAR protocol. As part of this research, the S-FEAR protocol has been analyzed in terms of the communication and processing costs associated with building and applying this model, regardless of the security techniques used. Moreover, the Qualnet network simulator was used to implement both FEAR and S-FEAR after carefully selecting the following security techniques to achieve both authentication and data integrity: the Cipher Block Chaining-Message Authentication Code (CBC-MAC) and the Elliptic Curve Digital Signature Algorithm (ECDSA). The performance of both protocols was assessed in terms of complexity and energy consumption. The results reveal that achieving authentication and data integrity successfully excluded all attackers from the network topology regardless of the percentage of attackers. Consequently, the constructed topology is secure and thus, safe data transmission over the network is ensured. Simulation results show that using CBC-MAC for example, costs 0.00064% of network energy while ECDSA costs about 0.0091%. On the other hand, attacks cost the network about 4.7 times the cost of applying these techniques.

Distributed Matching Algorithms for Spectrum Access: A Comparative Study and Further Enhancements

  • Ali, Bakhtiar;Zamir, Nida;Ng, Soon Xin;Butt, Muhammad Fasih Uddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1594-1617
    • /
    • 2018
  • In this paper, we consider a spectrum access scenario which consists of two groups of users, namely Primary Users (PUs) and Secondary Users (SUs) in Cooperative Cognitive Radio Networks (CCRNs). SUs cooperatively relay PUs messages based on Amplify-and-Forward (AF) and Decode-and-Forward (DF) cooperative techniques, in exchange for accessing some of the spectrum for their secondary communications. From the literatures, we found that the Conventional Distributed Algorithm (CDA) and Pragmatic Distributed Algorithm (PDA) aim to maximize the PU sum-rate resulting in a lower sum-rate for the SU. In this contribution, we have investigated a suit of distributed matching algorithms. More specifically, we investigated SU-based CDA (CDA-SU) and SU-based PDA (PDA-SU) that maximize the SU sum-rate. We have also proposed the All User-based PDA (PDA-ALL), for maximizing the sum-rates of both PU and SU groups. A comparative study of CDA, PDA, CDA-SU, PDA-SU and PDA-ALL is conducted, and the strength of each scheme is highlighted. Different schemes may be suitable for different applications. All schemes are investigated under the idealistic scenario involving perfect coding and perfect modulation, as well as under practical scenario involving actual coding and actual modulation. Explicitly, our practical scenario considers the adaptive coded modulation based DF schemes for transmission flexibility and efficiency. More specifically, we have considered the Self-Concatenated Convolutional Code (SECCC), which exhibits low complexity, since it invokes only a single encoder and a single decoder. Furthermore, puncturing has been employed for enhancing the bandwidth efficiency of SECCC. As another enhancement, physical layer security has been applied to our system by introducing a unique Advanced Encryption Standard (AES) based puncturing to our SECCC scheme.

Snapshot-Based Offloading for Web Applications with HTML5 Canvas (HTML5 캔버스를 활용하는 웹 어플리케이션의 스냅샷 기반 연산 오프로딩)

  • Jeong, InChang;Jeong, Hyuk-Jin;Moon, Soo-Mook
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.871-877
    • /
    • 2017
  • A vast amount of research has been carried out for executing compute-intensive applications on resource-constrained mobile devices. Computation offloading is a method in which heavy computations are dynamically migrated from a mobile device to a server, exploiting the powerful hardware of the server to perform complex computations. An important issue for offloading is the complexity of reconciling the execution state of applications between the server and the client. To address this issue, snapshot-based offloading has recently been proposed, which utilizes the snapshot of a web app as the portable description of the execution state. However, for web applications using the HTML5 canvas, snapshot-based offloading does not function correctly, because the snapshot cannot capture the state of the canvas. In this paper, we propose a code generation technique to save the canvas state as part of a snapshot, so that the snapshot-based offloading can be applied to web applications using the canvas.

An Overview for the Court of Arbitration for Sport (CAS) as the Authority to Settle the Sports-related Disputes (스포츠분쟁해결기구로서의 스포츠중재재판소(CAS)에 관한 고찰)

  • Sohn, Chang-Joo
    • Journal of Arbitration Studies
    • /
    • v.28 no.1
    • /
    • pp.43-75
    • /
    • 2018
  • The Court of Arbitration for Sport (CAS) was created to focus on the procedural complexity in the resolution of sports-related disputes, confidentiality, the matter of expenses, and the necessity of prompt settlement in the field of international sports. The CAS had originally launched as one of bodies of International Olympic Committee (IOC), but later it became properly operational as an independent organization to facilitate sports-related disputes when the International Council of Arbitration for Sport (ICAS), which came into force in accordance with the Paris Agreement in 1984 and has acted in place of IOC, took responsibility for the administration and financing of the CAS. The CAS is composed of four divisions, the Ordinary Arbitration Division and the Appeals Arbitration Division, the Ad hoc Division created later in 1996 and the CAS Anti-Doping Division (CAS ADD) established as from 2016 only to conduct proceedings and to issue decisions on an alleged anti-doping rule violation, and two (Sydney and New York) permanent decentralized offices. The head office of the CAS is Lausanne, Switzerland. Since CAS ADD was established, CAS Ad hoc Division has had jurisdiction over the appeal case against a decision pronounced by the IOC, an NOC, an international Federation or an Organizing Committee for the Olympic Games. Although there are so many virtues of CAS as a resolution authority for sports-related disputes in terms of its organization, arbitration rules and procedures, it is also true that the CAS has not been showing the consistency. The CAS should overcome these issues through much more advanced system and its instant and fair decisions.

Constant Time Algorithm for the Window Operation of Linear Quadtrees on RMESH (RMESH구조에서 선형 사진트리의 윈도우 연산을 위한 상수시간 알고리즘)

  • Kim, Kyung-Hoon;Jin, Woon-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.3
    • /
    • pp.134-142
    • /
    • 2002
  • Quadtree, which is a hierarchical data structure, is a very important data structure to represent binary images. The linear quadtree representation as a way to store a quadtree is efficient to save space compared with other representations. Therefore, it has been widely studied to develop efficient algorithms to execute operations related with quadtrees. The window operation is one of important geometry operations in image processing, which extracts a sub-image indicated by a window in the image. In this paper, we present an algorithm to perform the window operation of binary images represented by quadtrees, using three-dimensional $n{\times}n{\times}n$ processors on RMESH(Reconfigurable MESH). This algorithm has constant-time complexity by using efficient basic operations to route the locational codes of quardtree on the hierarchical structure of $n{\times}n{\times}n$ RMESH.

Design of an Efficient LDPC Codec for Hardware Implementation (하드웨어 구현에 적합한 효율적인 LDPC 코덱의 설계)

  • Lee Chan-Ho;Park Jae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.50-57
    • /
    • 2006
  • Low-density parity-check (LDPC) codes are recently emerged due to its excellent performance. However, the parity check (H) matrices of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix which is efficient in hardware implementation of both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the proposed methods, the implementation of encoders can become practical while keeping the hardware complexity of the partly parallel decoder structures. An encoder and a decoder are designed using Verilog-HDL and compared with the previous results.

Implementation of H.264/SVC Decoder Based on Embedded DSP (임베디드 DSP 기반 H.264/SVC 복호기 구현)

  • Kim, Youn-Il;Baek, Doo-San;Kim, Jae-Gon;Kim, Jin-Soo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1018-1025
    • /
    • 2011
  • Scalable Video Coding (SVC) extension of H.264/AVC is a new video coding standard for media convergence by providing diverse videos of different spatial-temporal-quality layers with a single bitstream. Recently, real-time SVC codecs are being developed for the application areas of surveillance video and mobile video, etc. This paper presents the design and implementation of a H.264/SVC decoder based on an embedded DSP using Open SVC Decoder (OSD) which is a real-time software decoder designed for the PC environment. The implementation consists of porting C code of the OSD software from PC to DSP environment, profiling the complexity performance of OSD with further optimization, and integrating the optimized decoder into the TI Davinci EVM (Evaluation Module). 50 QCIF/CIF frames or 15 SD frames per second can be decoded with the implemented DSP-based SVC decoder.