• Title/Summary/Keyword: Cobalt (Co)

Search Result 992, Processing Time 0.025 seconds

Synthesis and Stereochemistry of the Complexes of Cobalt(III) with New Tetradentate Ligands. Cobalt(III) Complexes of Ethylenediamine-N,N'-di-${\alpha}$-butyric Acid

  • Jun, Moo-Jin;Han, Chang-Yoon;Park, Yoon-Bong;Choi, Sung Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.135-138
    • /
    • 1985
  • A new flexible $N_2O_2$-type tetradentate ligand, ethylene-diamine-N,N'-di-${\alpha}$-butyric acid (eddb), has been synthesized, and a series of cobalt (III) complexes of eddb, $[Co(edda)(L)]^{n+}$ (L = $Cl_2$, $(H_2O)_2$, $Cl\;H_2O$, and $Co^2_3$), have been prepared. Only s-cis isomers have been yielded during the preparation of complexes. Ring strain is cited as the primary cause for the preference for the s-cis geometric configuration.

Trifunctional Amino Acid Cobalt(Ⅲ) Complexes of N,N'-Diethylethylenediamine-N,N'-di-α-butyrato Ligand

  • 이인경;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.433-436
    • /
    • 1996
  • Cobalt(Ⅲ) complexes of trifunctional amino acid and N,N'-diethylethylenediamine-N,N'-di-α-butyrate(deedba), s-cis-[Co(deedba)(L-aa)] (L-aa=S-methyl-L-cysteine, L-aspartic acid, L-glutamic acid) have been prepared from the reaction between the s-cis-[Co(deedba)(Cl2)]- complex and the corresponding amino acid. The amino acids have been found to coordinate through the amine and carboxylate groups. The S-methyl-L-cystene is coordinated not by the sulfur donor atom, but by the nitrogen and oxgen donor atoms, and the L-aspartic and L-glutamic acids are coordinated to the cobalt(Ⅲ) ion via formation of the five-membered glycinate chelate ring. Relatively small optical activity shown by the complexes is due to the chiral center present in the amino acids.

Color-change for ligand field of cobalt doped yttria stabilized cubic zirconia (YSZ) single crystal (Cobalt가 첨가된 이트리아 안정화 큐빅지르코니아(YSZ) 단결정의 리간드장에 따른 색상변화)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • Cobalt ($Co^{2+}$) doped yttria stabilized cubic zirconia (YSZ, $Y_2O_3\;:\;25{\sim}50wt%$) single crystals grown by a skull melting method were heat-treated in $N_2\;at\;1000^{\circ}C$ for 5 hrs. The reddish brown single crystals were changed into either violet or blue color, respectively. Before and after heat treatment, the Co-doped YSZ crystals cut for wafers (${\phi}6.5{\times}t\;2mm$) and round brilliant (${\phi}10mm$). The optical and structural properties were examined by UV-VIS spectrophotometer and XRD. These results are analyzed absorption by $Co^{2+}\;(^4A_2(^4F)\to{^4P})\;and\;Co^{3+}$, change of energy gap and lattice parameter.

The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method

  • Choi, Seung Han
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.371-375
    • /
    • 2018
  • The manganese-, nickel-, and aluminum-doped cobalt ferrite powders, $Mn_{0.2}Co_{0.8}Fe_2O_4$, $Ni_{0.2}Co_{0.8}Fe_2O_4$, and $Al_{0.2}CoFe_{1.8}O_4$, are fabricated by the sol-gel method, and the crystallographic and magnetic properties of the powders are studied in comparison with those of $CoFe_2O_4$. All the ferrite powders are nano-sized and have a single spinel structure with the lattice constant increasing in $Mn_{0.2}Co_{0.8}Fe_2O_4$ but decreasing in $Ni_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$. All the $M{\ddot{o}}ssbauer$ spectra are fitted as a superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The values of the magnetic hyperfine fields of $Ni_{0.2}Co_{0.8}Fe_2O_4$ are somewhat increased in the A and B sites, while those of $Mn_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$ are decreased. The variation of $M{\ddot{o}}ssbauer$ parameters is explained using the cation distribution equation, superexchange interaction and particle size. The hysteresis curves of the ferrite powders reveal a typical soft ferrite pattern. The variation in the values of saturation magnetization and coercivity are explained in terms of the site distributions, particle sizes and the spin magnetic moments of the doped ions.

Characterization of Co-AC/TiO2 Composites and Their Photonic Decomposition for Organic Dyes

  • Chen, Ming-Liang;Son, Joo-Hee;Park, Chong-Yun;Shin, Yong-Chan;Oh, Hyun-Woo;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.429-433
    • /
    • 2010
  • In this study, activated carbon (AC) as a carbon source was modified with different concentrations of cobalt chloride ($CoCl_2$) to prepare a Co-AC composite, and it was used for the preparation of Co-AC/$TiO_2$ composites with titanium oxysulfate (TOS) as the titanium precursor. The physicochemical properties of the prepared Co-AC/$TiO_2$ composites were characterized by $N_2$ adsorption at 77 K, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The photocatalytic treatments of organic dyes were examined under an irradiation of visible light with different irradiation times. $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine AC, which was $389\;m^2/g$. From the XRD results, the Co-AC/$TiO_2$ composites contained a mixturephase structuresof anatase and rutile, but a cobalt oxide phase was not detected in the XRD pattern. The EDX results of the Co-AC/$TiO_2$ composites confirmed the presence of various elements, namely, C, O, Ti, and Co. Subsequently, the decomposition of methylene orange (MO, $C_{14}H_{14}N_3NaO_3S$) and rhodamine B (Rh.B, $C_{28}H_{31}ClN_2O_3$) in an aqueous solution, respectively, showed the combined effects of an adsorption effect by AC and the photo degradation effect by $TiO_2$. Especially, the Co particles in the Co-AC/$TiO_2$ composites could enhance the photo degradation behaviors of $TiO_2$ under visible light.

An Experimental Study on Internal Decontamination Radiocobalt (Radiocobalt의 체내 오염(汚染)에 대(對)한 제염효과(除染效果))

  • Chung, In-Yong;Kim, Tae-Hwan;Chung, Hyun-Woo;Chin, Soo-Yil;Yun, Taik-Koo
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.1
    • /
    • pp.31-41
    • /
    • 1988
  • In case of the acute intake of radionuclide, an early medical treatment may be necessary, but the little is established the procedures to decontaminate the victims of internal contamination in Korea. The purpose of the present investigation is to study chemical agents to remove radiocobalt from the victims and to provide a more reliable procedure for the treatment. The removals of radiocobalt from the NIH-CGP)mice injected intraperitoneally with $1{\mu}Ci$ of $^{58}Co$ as $CoCl_2$ were investigated with doses of either $CaNa_3$ DTPA 8.4mg/0.2ml saline, $CoNa_3$ DTPA 8.4mg/0.2ml saline, or saline 5ml. The radioactivity was determined by MCA and Ge-detector on 4, 8, 12, 48 hours and 7 days for the whole body, organ distribution and urine excretion. Six mice per each group were sacrificed for the measurement of cobalt retention in the parenchymal tissue. The cobalt trisodium chelate had a pronounced effect on reducing the whole body retention and increasing the excretion rate. Regarding to the systemic protective effects, $CoNa_3$ DTPA, $CaNa_3$ DTPA and saline were effected significantly in order. In conclusion, the extrapolations from these results to human were suggested that the rapid administration of cobalt trisodium chelate and an amount of saline to the contaminated person after internal contamination of radiocobalt were markedly increasing the decontamination effects.

  • PDF

The study on Comparison Evaluation of Shear Bond Strength of Co-Cr Based Alloy using for Porcelain Fused Metal (도재용착주조관용 Co-Cr계 비귀금속 합금의 전단결합강도 비교평가에 관한 연구)

  • Kim, Hee-Jin;Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.32 no.3
    • /
    • pp.195-207
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the microstructural changes of surface in the specimens, performing the shear bond strength testing. The currently most used non-precious alloys are nickel-chromium based alloys with or without beryllium. However, their biocompatibility has been questioned concerning possible damages to the health of the patient and professionals involved in the fabrication of prosthesis caused by long exposure to Ni and Be. An option to nickel-chromium alloys is the cobalt-chromium alloy, an alternative that does not sacrifice the physical properties of the metal porcelain systems. Studies in the animals substantially show that the cobalt-chromium alloys are relatively well tolerated, being therefore more biocompatible than the nickel-chromium alloys. Methods: Non-addition Be to nickel-chromium based alloy(Bellabond plus) and cobalt-chromium alloy which has been widely used(Wirobond C) fused with ZEO light porcelain classified control group and cobalt-chromium alloy which is developing alloy of Alphadent company in Korea(Alphadent alloy) fused with ZEO light porcelain classified experimental group. The specimens of $4mm{\times}4mm{\times}0.5mm$ were prepared as-cast and as-opaque to cast body to analyze the mechanical characteristic change, the microstructure of alloy surface. The phase change was used to observe through XRD analysis and OM/SEM was used to observe the surface of specimens as-cast and as-opaque to cast body. Chemical formation of their elements was measured with EDS. Then hardness was measured with Micro Vicker's hardness tester. Shear bond strength test thirty specimens of $10mm{\times}10mm{\times}2mm$ was prepared, veneered, 3mm high and 3mm in diameter, over the alloy specimens. The shear bond strength test was performed in a universal testing machine(UTM) with a cross head speed of 0.5mm/min. Ultimate shear bond strength data were analyzed with one-way ANOVA and the Scheffe's test (P<0.05). Within the limits of this study, the following conclusions were drawn: The X-ray diffraction analysis results for the as-cast and as-opaque specimens showed that the major relative intensity of Bellabond plus alloy were changed smaller than Wirobond C and Alphadent Co-Cr based alloys. Results: Microstructural analysis results for the opaque specimens showed all the alloys increased carbides and precipitation(PPT). Alphadent Co-Cr based alloy showed the carbides of lamellar type. The Vickers hardness results for the opaque specimens showed Wirobond C and Alphadent Co-Cr based alloys were increaser than before ascast, but Bellabond plus alloy relatively decreased. The mean shear bond strengths (MPa) were: 33.11 for Wirobond C/ZEO light; 25.00 for Alphadent Co-Cr alloy/ZEO light; 18.02 for Bellabond plus/ZEO light. Conclusion: The mean shear bond strengths for Co-Cr and Ni-Cr based alloy were significantly different. But the all groups showed metal-metal oxide modes in shear bond strengths test at the interface.

The Effect of Pt and La Promoted on Cobalt-Based Catalyst for CO2 Dry Reforming (이산화탄소 건식 개질반응을 위한 코발트계 촉매에서 Pt와 La의 영향)

  • Lee, Hye-Hyun;Song, Sang-Hoon;Chang, Tae-Sun;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • The $CO_2$ dry reforming reaction, which converts carbon dioxide to hydrogen and carbon monoxide, is typical endothermic reaction, and also known as adverse reaction owing to thermodynamics. In order to overcome the problem, the development studies of suitable catalyst based on precious metals for high durability of thermal and optimization of life time have been examined but it had economical problem by high cost. In this study, we confirmed optimum contents of Pt and La with such different contents of Pt (0.02~0.2 wt%) or La (2~20 wt%) over $Co/SiO_2$ which prepared for excellent activity and cost-effective catalysts. As a result, the promoted catalysts with 0.04 wt% Pt or 9 wt% La over $Co/SiO_2$ showed the highest activity which is 57% and 55% $CO_2$ conversion respectively. Also, the particle size of cobalt on the promoted catalysts with 0.04 wt% Pt or 9 wt% La by characterization of catalyst could confirm the smallest particle size in this study. Therefore, it could know that particle size of cobalt had effected the stability and reactivity of catalysts due to the contents of Pt and La.

Chemical Leaching of Co, Cu, Ni, Al, Fe by Organic acid from Cobalt Concentrate (코발트 정광(精鑛)으로부터 유기산(有機酸)을 이용(利用)한 Co, Cu, Ni, Al, Fe의 화학적(化學的) 침출(浸出))

  • Ahn, Jae-Woo;Ahn, Hyo-Jin;Kim, Meong-Woon
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.63-70
    • /
    • 2011
  • Enviromental friendly leaching process for the recovery of cobalt and copper from the cobalt concentrate was investigated by organic acids as a leaching reagent. The experimental parameters, such as organic acid type, concentrations of leachant, time and temperature of the reaction as well as the solid to liquid ratio were tested to obtain the optinum conditions for the leaching of cobalt and copper. The results showed that citric acid was the most effective leaching reagent among the organic acids used in this experiment. About 99% of cobalt, 95% of copper and 70% of nickel was dissolved by 2.0 M of citric acid. Addition of 3.0 vol.% of hydrogen perioxide was effective to enhance the leaching efficiency and the optinum temperature was found to be about $70^{\circ}C$.

WASHING-ELECTROKINETIC DECONTAMINATION FOR CONCRETE CONTAMINATED WITH COBALT AND CESIUM

  • Kim, Gye-Nam;Yang, Byeong-Il;Choi, Wang-Kyu;Lee, Kune-Woo;Hyeon, Jay-Hyeok
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1079-1086
    • /
    • 2009
  • A great volume of radioactive concrete is generated during the operation and the decommissioning of nuclear facilities. The washing-electrokinetic technology in this study, which combined an electrokinetic method and a washing method, was developed to decontaminate the concrete generated in nuclear facilities. The results of only an electrokinetic decontamination for the concrete showed that cobalt was removed to below 1% from the concrete due to its high pH. Therefore, the washing-electrokinetic technology was applied to lower the pH of the concrete. Namely, when the concrete was washed with 3 M of hydrochloric acid for 4 hours (0.17 day), the $CaCO_3$ in the concrete was decomposed into $CO_2$ and the pH of the concrete was reduced to 3.7, and the cobalt and cesium in the concrete were removed by up to 85.0% and 76.3% respectively. Next, when the washed concrete was decontaminated by the electrokinetic method with 0.01M of acetic acid in the 1L electrokinetic equipment for 14.83 days, the cobalt and the cesium in the concrete were both removed by up to 99.7% and 99.6% respectively. The removal efficiencies of the cobalt and cesium by 0.01M of acetic acid were increased more than those by 0.05M of acetic acid due to the increase of the concrete zeta potential. The total effluent volume generated from the washing-electrokinetic decontamination was 11.55L (7.2ml/g).