• Title/Summary/Keyword: Coaxial cables

Search Result 42, Processing Time 0.022 seconds

Electromagnetic Field Characteristics of the Slotted Coaxial Clables (동축 슬롯케이블의 전자파 특성)

  • 이애경;김두경;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.17-25
    • /
    • 1991
  • Slotted coaxial cables are used for a wide variety of radio communications and control applications within buildings, subways, tunnels and outdoors. They function as continuous antennas to solve RF coverage problems in difficult or confined areas. In this paper the electric and magnetic field distributions inside and outside of axially slotted coaxial cables are analyzed numerically. This paper gets the fields from the equivalent potentials which are obtained by grid relaxation method. The slot electric field configurations are consistent with Essam E. Hassan's results. The field distributions in the slotted coaxial cables show that the TEM mode doesn't propagate any longer in them. But the fields don't variate with the frequencies that are under the first higher order mode cutoff frequency of shielded coaxial cable of the same dimension The fields inside of the tunnel ($3\times4$) including the slotted coaxial cable axially are similar to those of $TE_{10}$ mode at 38.75 MHz. This method offers the basis for theoretical analysis of coaxial cables with nonuniform slots as well as coaxial cables in tunnels and buildings.

  • PDF

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur;Sami Arsoy
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.133-154
    • /
    • 2023
  • Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.

Characteristics and Analysis of CATV Home Networks (CATV 홈 네트워크의 특성 분석)

  • Park, Sung-Wook;Park, Jong-Kwan;Ohm, Woo-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.286-291
    • /
    • 2013
  • Home CATV networks comprise coaxial cables and signal splitters which have less than ideal characteristics. Home network testing facilities use long lengths of coaxial cables, often undesirably coiling and bending the cable, stressing joints on connectors. Cable connectors, cable placement, bending and flexing can cause leakage of signals and can result in undesired signal paths in a system causing deteriorated performance. The purpose of this paper is to bring to light the issues of signal leakage and radiation from shielded media such as RG-59 and RG-6 coaxial cables, furthermore signal splitters have less than ideal characteristics.

Review of the design, production and tests of compact AC HTS power cables

  • Fetisov, S.S.;Zubko, V.V.;Nosov, A.A.;Zanegin, S.Yu.;Vysotsky, V.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.31-39
    • /
    • 2020
  • Power cables made of high temperature superconductors (HTS) are considered as most advanced applications of superconductivity for electro-energetics. Several cables made of the First Generation (1G) HTS wires have been produced and installed to electrical grids worldwide. Power cables made of the Second Generation HTS wires (2G or Coated Conductors) are in active development. Most basic principles of HTS power cables development have been published in many works since 90-ties. In this Review we would like to present our new developments mostly directed to 2G HTS compact power cables. We are presenting the methods to optimize a design of 2G AC compact power cable providing uniform current distribution among cable layers and the production technology approaches to implement such a design. AC losses measurements in such cables and other test methods are described. Some problems of the development 2G HTS power cables with small diameters are discussed. We presented as examples designs, developments and test results of two major coaxial cables designs: single-phase (cable core and a shield) and three-phase (triaxial: with three coaxial phases).

Application of Time Domain Reflectometry to the Monitoring or Rock Mass Deformation with Coaxial Cable (동축 케이블을 이용한 시간영역 반사법의 암반변위 계측에의 적용)

  • 정슬람;정소걸;정현기;박철환;박철환;이희근
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.306-315
    • /
    • 1996
  • This paper presents an application of the TDR(Time Domain Reflectometry) to the monitoring of the deformation of rock mass with grouted coaxial cables through laboratory tests. The grouted cable can easily deform together with the rock mass movements, and the deformed cable loses its original capacitance and the reflected waveform produced along the deformed cable consequently represents a change of voltage pulse. Therefore, it is possible to monitor the deformation of rock mass by measuring the changes in these reflection signatures. Shear test of the cemented mortar containing a specimen of coaxial cable showed that the shear deformation correlated linearly with the reflection coefficient, so the TDR was effective to monitor the displacement of the rock mass. Bending test were carried out in order to determine the influence of the crooked cables on the monitoring of rock mass movements. Controlled cirmping and shearing test upon a cable of 50 m long, 12.7 mm diameter showed not only the fact that the reflection amplitudes decreased as the cable length increased but also the proper crimping depth, width and interval between two adjacent crimps. Two coaxial cables-one 100 m long and other 175m long-were installed and grouted into the separate boreholes drilled in a sedimentary formation. The behavior of the cable was monitored with metallic TDR cable tester to measure rock mass deformation based on the interpretative techniques developed through laboratory tests.

  • PDF

A Study on the Partial Discharge Location Method using 2 Sensors (2개 센서를 이용한 부분방전 위치추정 기법 연구)

  • Kim, Jeong-Tae;Kim, Dong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.251-256
    • /
    • 2012
  • This study deals with the location of partial discharges(PDs) for power cables and GIS using 2 PD sensors and long coaxial signal cables. Throughout the experiments by use of simulated PD pulses and corona discharges in the power cable system, it is found out that the impedance matching between the coaxial signal cable and the measuring equipment should be done for good S/N ratio and the on-site measurement using more than 100m-long coaxial signal cable is possible. In addition, new PD location algorithm with the polarities of PD pulses and the arrival time difference between two pulses was proposed and was proved through the partial discharge experiments for the cable joint defect and artificial void defect.

A Basic Study on the Modeling for Analysis of Superconducting Cable (초전도케이블 해석용 모델링에 관한 기초연구)

  • 김남열;정채균;이종범
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.267-270
    • /
    • 2002
  • It is very important to analyze the superconducting power cables by the modeling for correct and reasonable cable design suitable for the domestic situation of power systems. This paper describes the basic modeling for superconducting power cables using ATPDraw. And also it is shown the line constants of cold dielectric coaxial type which is one of the HTS cables. It is compared with the line constants of general two kinds of power cables(OF, XLPE).

  • PDF

An Elimination Method Of the Circulating Current Flowing into Coaxial-Neutral Lines in 22.9[kV] CNCV Underground Cable Systems (22.9[kV] 지중배전계통케이블의 동심중성선에 흐르는 순환전류의 제거방안 및 효과)

  • Jeon, Myung-Su;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • In 22.9[kV]-y distribution systems, underground cables are provided with multiple-point ground in which each coaxial-neutral line of the distribution cable lines(A, B, C phases) is 3-wire common grounded. In the underground cable distribution systems, circulating current flows in the coaxial-neutral lines and its magnitude amounts to about $40{\sim}50[%]$ load currents, even though loads are balanced. Power loss due to the circulating current consequently reaches to about 76[%] total losses occurred in all conductor lines. This power loss provokes additional temperature rise of the underground cable lines and finally results in 20[%] reduction of the current capacity of the cables. This paper presents a new ground method to overcome such a problem. The proposed method eliminates the circulating current flowing in the coaxial-neutral line effectively. Measurement results confirmed from the practical site-test show validity and effectiveness of this research.

A Study on Shield Wire Stripping of Micro Coaxial Cable for Medical Device Using Nd:YAG Laser (Nd:YAG 레이저를 이용한 의료기기용 마이크로 동축케이블의 실드선 탈피에 관한 연구)

  • Lee, Jeong-Wan;Kim, Jung-Hoon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.35-41
    • /
    • 2006
  • Recently, as ultrasonic medical devices are gradually developed, many of those requires smaller and more precision coaxial cables in probe. So, the use of micro coaxial cable becomes an efficient solution for ultrasonic machine. However, there are many difficulties in stripping micro coaxial cable by traditional mechanical process. In this paper, we use the Nd-YAG laser for the efficient stripping of conduct wire of cable. We propose a new method to strip the shield wire of micro coaxial cable. Through some experiments, we found that there is a new possibility in the proposed method. Also, in order to enhance the performance, we propose a preprocess of the cable before stripping.

  • PDF

Shielding Effect Analysis of Communication Cables Using EN50289 for Transfer Impedance Measurement of Coaxial Cable (EN50289 동축케이블 전달 임피던스 측정 방법을 이용한 통신 케이블의 차폐 효과 분석)

  • Lee, Keunbong;Zhang, Nan;Jeon, Jiwoon;Song, Seungje;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1156-1163
    • /
    • 2014
  • In this work by measuring transfer impedance of communication cables using EN50289 its Shielding effect is analyzed. transfer impedance measurement triaxial method using EN50289 is defined in CENELEC, it is unlike triaxial method prescribed in IEC Standard 96-1, can be measured regardless of diameter of coaxial cable and outer conductor. in this paper, transfer impedance measurement device of coaxial cable is designed and made according to EN50289 standard, The analysis determines the reliable working frequency range of coaxial cable and examined the impact of different shielding methods on coaxial cable. The transfer impedance measurements show considerable variations in results with various shielding methods. also the measurement procedure is verified through comparison of calculated and measured transfer impedance of RG-58 cable.