• Title/Summary/Keyword: Coating material of spray

Search Result 163, Processing Time 0.033 seconds

An Experimental Study on the Fireproof Covering Thickness of High Strength Concrete Members with Spray Coating (뿜칠피복재를 사용한 고강도 콘크리트 부재의 내화피복두께에 관한 실험적 연구)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.41-46
    • /
    • 2010
  • High strength concrete (HSC) has been mainly used in large SOC structures. HSC have superior property as well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling in concrete front surface near the source of fire occurs serious problem in structural safety. Therefore, this study is concerned with experimentally investigation of fire resistance at high temperature due to fireproof material covering thickness in addition to concrete cover. From the test result, it was appeared that the use of fireproof material results in good performance for fire resistance and spalling prevention, and the optimal fireproof covering thickness is 1~3mm. On the other hand, the temperature was rapidly increased by explosive spalling within 30 minutes and showed very little rise caused by evaporation heat after then. It was also found that the void channel was remained at high temperature as PP fiber melts at about $200^{\circ}C$, and the pore pressure in concrete was decreased.

Preparation of Photosynthesis Nanofiber Composite Membrane by Using Chlorophyll and Polymer Nanofiber (식물 엽록소와 고분자 나노섬유를 이용한 광합성 나노섬유복합막의 제조)

  • Yun, Jaehan;Jang, Wongi;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In this study, chlorophylls were been extracted from common local plants, deposited on polypropylene (PP) substrate using various approaches, and the oxygen generation effect of the chlorophylls were investigated. The loading of chlorophylls on the substrates was achieved by dipping and spraying methods, where the spraying coating showed overall better results regarding oxygen generation from the combustion experiments in the closed vessel or in the isolated vacuum oven cell than those of dip coating. In addition, a composite substrate was prepared by nylon6/6 nanofiber on the PP substrate, and it exhibited an increase in the activation of chlorophylls. In the case of samples containing titanium dioxide ($TiO_2$), the reaching time of oxygen concentration from 16% to 21% and the combustion test using a candle for a sample with 50% chlorophylls showed similar results to those of a sample without $TiO_2$. As such, combining a spray coating and $TiO_2$ incorporation into gas separation membrane systems are expected to be useful to understand the fundamentals of material properties for their applications as oxygen generation membranes and air filtration systems.

Corrosion Behavior of $Y_2O_3$ Coating in an Electrolytic Reduction Process (전해환원공정에서 $Y_2O_2$ 코팅층의 부식거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seung;Jeong, Myeong-Soo;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Electromechanical Properties of Conductive MWCNT Film Deposited on Flexible Substrate Affected by Concentration of Dispersing Agent (분산제 농도에 따른 MWCNT 전도성 유연필름의 전기-기계적 특성)

  • HwangBo, Yun;Kang, Yong-Pil;Kim, Jae-Hyun;Kim, Duck-Jong;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.517-521
    • /
    • 2012
  • Carbon nanotubes (CNTs) have been regarded as a promising material for the fabrication of flexible conductors such as transparent electrodes, flexible heaters, and transparent speakers. In this study, a multiwalled carbon nanotube (MWCNT) film was deposited on a polyethylene terephthalate (PET) substrate using a spraying technique. MWCNTs were dispersed in water using sodium dodecyl sulfate (SDS). To evaluate the effect of the weight ratio between SDS and MWCNTs on the electromechanical properties of the film, direct tensile tests and optical strain measurement were conducted. It was found that the CNT film hardly affected the mechanical behavior of CNT/PET composite films, while the electrical behavior of the CNT film was strongly affected by the SDS concentration in the CNT film. The electrical resistance of CNT/PET films gradually increased with the strain applied to the PET substrate, even up to a large strain that ruptured the substrate.

Influence of Flowability of Ceramic Tile Granule Powders on Sintering Behavior of Relief Ceramic Tile (과립분말 유동성 변화가 부조세라믹타일의 소결거동에 미치는 영향)

  • Shin, Cheol;Choi, Jung-Hoon;Kim, Jung-Hun;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.550-557
    • /
    • 2020
  • Used in the ceramic tile market as a representative building material, relief ceramic tile is showing increased demand recently. Since ceramic tiles are manufactured through a sintering process at over 1,000 ℃ after uniaxial compression molding by loading granule powders into a mold, it is very important to secure the flowability of granular powders in a mold having a relief pattern. In this study, kaolin, silica, and feldspar are used as starting materials to prepare granule powders by a spray dryer process; the surface of the granule powders is subject to hydrophobic treatment with various concentrations of stearic acid. The effect on the flowability of the granular powder according to the change of stearic acid concentration is confirmed by measuring the angle of repose, tap density, and compressibility, and the occurrence of cracks in the green body produced in the mold with the relief pattern is observed. Then, the green body is sintered by a fast firing process, and the water absorption, flexural strength, and durability are evaluated. The surface treatment of the granule powders with stearic acid improves the flowability of the granule powders, leading to a dense microstructure of the sintered body. Finally, the hydrophobic treatment of the granule powders makes it possible to manufacture relief ceramic tiles having a flexural strength of 292 N/cm, a water absorption of 0.91 %, and excellent mechanical durability.

Synthesis of Carbon Coated Nickel Cobalt Sulfide Yolk-shell Microsphere and Their Application as Anode Materials for Sodium Ion Batteries (카본 코팅된 니켈-코발트 황화물의 요크쉘 입자 제조 및 소듐 이온 배터리의 음극 소재 적용)

  • Hyo Yeong Seo;Gi Dae Park
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.387-393
    • /
    • 2023
  • Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitch-derived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.

The Study on Reduction of Hazardous Materials using Eco-friendly Charcoal Composite Sheet (친환경 활성탄 복합시트의 유해물질 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2018
  • Recently, various environmentally friendly products have been developed for improving the indoor air quality while pursuing a well-being nature-friendly healthy life as a core value. In this research, we not only solve the problems of existing environmentally friendly paints, but also developed a charcoal composite seats that can reduce radon, which is a natural radioactive substance, and evaluated the reduction effect of radon, formaldehyde and volatile organic compounds. In the charcoal composite seats, a sodium silicate emulsion and charcoal were mixed to prepare an charcoal liquid coating material, and the composite seats was fabricated by air-spray coating method. In order to analyze the hazardous substance reduction performance of the fabricated charcoal composite seats, radon was designed to comply with the Ministry of the Environment standard, formaldehyde and volatile organic compounds were designed to comply with KCL-FIR-1085 standard. As a result of the experiment, the fabricated charcoal composite seats was evaluated as having a radon reduction capability of about 90.8% from 20 hours, formaldehyde and volatile organic compounds were 3 hours, and the reduction capability of 96.7% and 96.6% was found respectively. It is considered that these results can be utilized as basic data at the time of product development for improvement of indoor air quality.

Study on the Extending Storage Life of Grape by Applying Edible Coating Materials (가식성 코팅물질을 이용한 포도의 저장성 연장 연구)

  • Kim, Joon-Yeol;Han, Myung-Ryun;Chang, Moon-Jeong;Kim, Byung-Yong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.207-211
    • /
    • 2002
  • This study was conducted to increase the shelf life of grape by edible coating material such as methyl cellulose (MC) with antimicrobial substances, n-capric acid isopropyl ester (ci) and sodium nitrate (sn), added by spraying method. The quality changes of packaged grapes with wrapping PE film on EPS tray were investigated for 16 days at $30{\circ}C$. The shelf-lives of C and MCci based on the weight reduction ratio of 7% were 6 days and 9 days, respectively. The reduction rate of acidity of C was higher value than those of treatments during 18 days of storage at $30{\circ}C$. The vitamin C reduction ratios of C, MCsn and MCci were 64.8, 51.5 and 49.8%, respectively, after 16 days at $30{\circ}C$. The reduction rates of firmness of C, MCsn and MCci after 16 days at $30{\circ}C$ were 44.2, 26.5, and 23,2%, respectively compared to that of initial storage grapes. The additions of ci and sn had much affected the reductions of bacteria and yeast counts especially early stage of storage. The hedonic sensory evaluation scores of MCci and MCsn had higher values than those of MC.

Friction and Wear Properties of Plasma-sprayed Cr2O3-MoO3 Composite Coatings at High Temperature (MoO3가 첨가된 Cr2O3 플라즈마 용사코팅의 고온 마찰 마멸 특성)

  • Lyo, In-Woong;Ahn, Hyo-Sok;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.851-856
    • /
    • 2002
  • Tribological behavior of plasma-sprayed $Cr_2O_3$-based coatings containing $MoO_3$ at 450$^{\circ}C$ was investigated to understand the influence of $MoO_3$. A reciprocal disc-on-plate type tribo-tester was employed to examine fricition and wear behavior of the specimens. The microstructure and phase composition of the coating was characterized with Transmission Electron Microscopy(TEM). The TEM analysis indicated that $MoO_3$ was dispersed into the grain boundary, resulting in the increase of the hardness and density of the coating. Worn surfaces were investigated by scanning electron microscopy and chemistry of the worn surfaces was analyzed using a X-ray Photoelectron Spectrometer(XPS). The results showed that the friction coefficient of the $MoO_3$-added coatings was lower than that without $MoO_3$ addition. The larger protecting layers were observed at the worn surface of plasma spray coated specimens with $MoO_3$ composition in the protecting layer appears to be more favorable in reducing the friction.

Development of LSM-Coated Crofer Mesh for Current Collectors in Solid Oxide Fuel Cells (LSM이 코팅된 고체산화물 연료전지용 Crofer Mesh 집전체 개발)

  • Baek, Joo-Yul;Park, Seok-Joo;Lee, Seung-Bok;Lee, Jong-Won;Lim, Tak-Hyoung;Song, Rak-Hyun;Kim, Kwang-Bum;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.256-263
    • /
    • 2010
  • A Crofer 22 APU mesh coated with a conductive ceramic material was developed as an alternative cathode current collector to Ag-based materials for solid oxide fuel cells. $(La_{0.80}Sr_{0.20})_{0.98}MnO_3$ (LSM) layer was deposited onto the Crofer mesh using a spray-coating technique, in an attempt to mitigate the degradation of electrical properties due to surface oxidation at high temperatures. The oxidation experiments at $800^{\circ}C$ in air indicated that the areaspecific resistance (ASR) of the LSM-coated Crofer mesh was strongly dependent on the wire diameter and the contact morphology between mesh and cell. In addition, the post-heat-treatment in $H_2/N_2$ resulted in a reduced thickness of Cr-containing oxide scales at the interface between Crofer mesh and LSM layer, leading to a decreased ASR.