• Title/Summary/Keyword: Coating Thickness

Search Result 1,461, Processing Time 0.037 seconds

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation (온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조)

  • Kim Jeong-Hoon;Sohn Woo-Ik;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

Development of Composite Hollow Fiber Membranes for Olefin Off-gas Recovery (올레핀 배가스의 분리를 위한 중공사형 복합막의 개발)

  • Kim Jeong-Hoon;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.157-164
    • /
    • 2005
  • In this study, composite hollow fiber membranes were developed for the recovery of olefin monomers in polyolefin industry off-gases. Polyetherimide (PEI) hollow fiber support membranes were fabricated from spinning solutions containing PEI, NMP and polyethylene glycol (PEG). The influence of dope solution and inner coagulant composition on the permeation properties and structure of hollow fiber supports was examined. PDMS was used as a selective layer and coated on PEI hollow fiber support. The thickness of active layer was controlled by changing coating solution concentration. The permeation properties of hollow fiber supports and composite membranes were characterized with a pure gas permeation test. The optimized composite hollow fiber membrane has $10\;{\mu}m$ selective layer and shows excellent separation performance; the ideal selectivity of olefins over nitrogen is in the following order: 1-butylene (6.4) > propylene (17) > ethylene (97), which selectivity data are similar to the intrinsic olefin/nitrogen selectivities of PDMS. This confirms that the new composite hollow fiber membranes suitable for olefin off-gas recovery has developed successfully.

Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles (유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조)

  • Lee, Chongmin;Kim, Jiwoong;Chang, Hankwon;Roh, Ki-Min;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.78-82
    • /
    • 2015
  • Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from $1{\mu}m$ to $3{\mu}m$ in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/$SiO_2$ core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.

Design Factors of Membrane Electrode Assembly for Direct Methanol Fuel Cells. (직접 메탄올 연료전지용 막-전극 접합체의 설계 인자에 관한 연구)

  • Cho, Jae-Hyung;Hwang, Sang-Youp; Kim, Soo-Kil;Ahn, Dong-June;Lim, Tae-Hoon;Ha, Heung-Yong
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.293-299
    • /
    • 2007
  • Direct coating of catalyst layer on the $Nafion^{(R)}$ membrane has been optimized in the process of fabrication of membrane electrode assembly (MEA) to enhance the performance of direct methanol fuel cell (DMFC). In this method, the contact resistance at the interface of the catalyst layer and the membrane was found to be low. The effect of catalyst loading, thickness of membrane and the gas diffusion layer (GDL) with or without the presence of micro-porous layer (MPL) on the performance of the MEA was also investigated. The MEA fabricated by the above-mentioned method exhibited a performance of $147\;mW/cm^2$ and $100\;mW/cm^2$ at $80^{\circ}C$ and $60^{\circ}C$, respectively, with the catalysts loading of $4\;mg/cm^2$.

  • PDF

Microwave Absorbing Properties of Silver-coated Ni-Zn Ferrite Spheres Prepared by Electroless Plating (무전해 도금법에 의해 제조된 은 피복 Ni-Zn Ferrite Sphere의 전파흡수특성)

  • Kim, Jong-Hyuk;Kim, Jae-Woong;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.202-206
    • /
    • 2005
  • The present investigation provides an electromagnetic radiation absorptive composition which comprises silver-coated ferrite microspheres dispersed in silicon rubber matrix for the aim of thin microwave absorber in GHz frequencies. Ni-Zn ferrite spheres with $50{\mu}m$ size in average were prepared by spray-drying and sintering at $1130^{\circ}C$. Conductive silver layer was plated on ferrite spheres by electroless plating. Conductive Ni-Zn ferrite sphere with uniform silver layer were obtained in the concentration of 10 g/L $AgNO_3$ per 20 g ferrite spheres. For this powder, electrical resistance is reduced as low as $10^{-2}\~10^{-3}\;\Omega$. The most sensitive material parameters with silver plating is real and imaginary parts of complex permittivity. The conductive Ni-Zn ferrite spheres have large values of dielectric constant. Due to this high dielectric constant of microspheres, matching thickness is reduced to as low as 2 mm at the frequency of 7 GHz, which is much thinner than conventional ferrite absorbers.

Optical Constant Measurements of Highly Conductive Carbon Nanotube Films by Using Time-domain Terahertz Spectroscopy (시분해 테라파 분광학을 이용한 고전도성 탄소나노튜브 박막의 광학계수 측정)

  • Moon, J.Y.;Park, D.J.;Lim, J.H.;Rotermund, F.;Lee, S.;Ahn, Y.H.
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • We performed time-domain terahertz (THz) spectroscopy to determine optical constants of highly conductive carbon nanotube (CNT) films. The CNT films have been fabricated on a flexible plastic substrate by using spin-coating or vacuum filtration. We found that the transmission of THz waves can be controlled by manipulating the thickness of the films and by post-treatments. From amplitude and phase information of the transmitted THz waves, we obtain optical constants such as refractive indices and dielectric constants of the CNT films. The frequency dependent dielectric constants show good metallic behaviors, relevant to the Drude free electron models with high plasma frequencies. It is also found that the dielectric constants are higher for the acid-treated films. Finally, the frequency dependent dielectric constants which are free from substrate effects have been demonstrated by using CNT films deposited on cellulose membranes.

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Influence of thickness ratio and substrate bias voltage on mechanical properties of AlCrN/AlCrSiN double-layer coating (두께 비율과 기판 바이어스 전압이 AlCrN/AlCrSiN 이중층 코팅의 기계적 특성에 미치는 영향)

  • Kim, Hoe-Geun;Ra, Jeong-Hyeon;Lee, Sang-Yul;Han, Hui-Deok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.162-162
    • /
    • 2017
  • AlCrN 코팅은 높은 경도, 낮은 표면 조도 등의 상온에서의 우수한 기계적 특성 이외에 고온에서 안정한 합금상의 형성으로 인하여 우수한 내열성을 보이는 코팅이며, Si을 첨가하여 나노복합구조를 갖는 AlCrSiN 코팅은 고경도 특성을 나타내는 나노결정립과 고내열성을 나타내는 $Si_3N_4$ 비정질이 동시에 존재함으로써 뛰어난 고온 특성까지 보유하여 공구 코팅으로의 적용 가능성이 크다. 본 연구에서는, 가혹화된 공구사용 환경 대응 하는 더욱 우수한 내마모성 및 내열성을 보이는 코팅막을 개발하기 위해 AlCrN/AlCrSiN 이중층 코팅을 합성하였다. 합성된 코팅의 구조 및 물성을 분석하기 위해 field emission scanning electron microscopy(FE-SEM), nano-indentation, atomic force microscopy(AFM) 및 ball-on-disk wear tester를 사용하였다. 내열성을 확인하기 위하여 코팅을 furnace에 넣어 500, 600, 700, 800, 900도에서 30분 동안 annealing한 후에 nano-indentation을 사용하여 경도를 측정을 하였다. 5:5, 7:3, 9:1의 두께 비율로 AlCrN/AlCrSiN 이중층 코팅을 합성하였으며 모든 코팅의 두께는 $3{\mu}m$로 제어되었다. AlCrN 코팅층의 두께가 증가할수록, 이중층 코팅의 경도 및 내마모성은 점차 향상되었지만 코팅의 밀착력은 감소하였다. 일반적으로 AlCrN 코팅은 상대적으로 높은 잔류응력을 갖고 있으므로, AlCrN 층의 두께비율이 증가함에 따라 코팅내의 잔류응력이 높아져 코팅의 경도는 증가하고 밀착특성은 낮아진 것으로 판단된다. AlCrSiN 상부층 공정시 기판 바이어스 전압을 -50 ~ -200V 로 증가시키면서 이중층 코팅을 합성하였다. XRD 분석 결과, 공정 바이어스 전압이 증가함에 따라 AlCrSiN 상부층은 점차 비정질화 되었고, 코팅의 경도와 표면 특성이 향상되는 것을 확인하였다. 이러한 특성 향상은 높은 바이어스 인가가 이온 충돌효과의 증가를 야기시켰으, 이로 인해 치밀한 코팅층 합성에 의한 결과로 판단된다. AlCrN/AlCrSiN 이중층 코팅을 어닐링 한 후 경도 분석 결과, -150, -200V에서 합성한 코팅은 900도 이상에서 26GPa 이상의 높은 경도를 보인 것으로 보아 우수한 내열성을 갖는 것으로 확인 되었다. 이는 AlCrSiN 상부층의 높은 Si 함량 (11at.%) 으로 인한 충분한 $Si_3N_4$ 비정질상의 형성과, 고바이어스 인가로 인한 AlCrN 결정상과 $Si_3N_4$ 비정질상의 고른 분배가 코팅의 내열성을 향상시키는데 기여를 한 결과로 판단된다.

  • PDF

Effects of Safflower (Carthamus tinctorius L.) Seed Powder on Bone Resorption in Ovariectomized Rats (난소적출 흰쥐에서 홍화(Carthamus tinctorius L.)씨 분말이 골흡수에 미치는 영향)

  • Bae, Chun-Sik;Park, Chang-Hyun;Chang, Byung-Joon;Kim, Hwi-Yool;Cho, Ick-Hyun;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.109-116
    • /
    • 2001
  • Safflower has been cultivated in Korea and thought to have excellent effects on bone in oriental medicine and folk remedy and has been taken for a long time. Safflower is thought to be helpful for the development and sustenance of bones according to the result of recent assay of its components. Otherwise, any reliable experimental data have not been suggested so far. We have carried out this study to examine the prophylactic effects of safflower-seed-powder on the prevention of osteoporosis induced by the ovariectomy 12 Weeks-old Sprague-Dawley rats weighing about 230 g was kept in the experimental condition and used in this study. Animals were taken 0.3 g of safflower-seed-powder once a day for 1, 3, 5, and 7 weeks after ovariectomizing both ovaries and observed the fine structure of tibia. Tissues were fixed with traditional SEM preparation methods and decalcified for 10 hours with 10% nitric acid and dehydration, drying, and gold-coating were followed by the routine procedures and observed with scanning electron microscope (Hitachi, S-450). Loss of bone was started just after ovariectomy and thickness of bone from the medullary cavity to the compact bone was reduced and the extension of medullary cavity was serious in the control group of 7 weeks. Experimental groups taken safflower-seed-powder showed similar findings from 1 week to 7 weeks. These results suggest that the safflower-seed-powder is thought to be efficient for the prevention of osteoporosis owing to the deficiency of female sex hormone.

  • PDF

Gas Transport Behaviors through Multi-stacked Graphene Oxide Nanosheets (적층된 산화그래핀 분리막의 기체 투과 거동 평가)

  • Lee, Min Yong;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.167-181
    • /
    • 2017
  • Graphene-based materials have been considered as a promising membrane material, due to its easy processability and atomic thickness. In this study, we studied on gas permeation behavior in few-layered GO membranes prepared by spin-coating method. The GO membrane structures were varied by using different GO flake sizes and GO solutions at various pH levels. The GO membranes prepared small flake size show more permeable and selective gas separation properties than large one due to shortening tortuosity. Also gas transport behaviors of the GO membranes are sensitive to slit width for gas diffusion because the pore size of GO membranes ranged from molecular sieving to Knudsen diffusion area. In particular, due to the narrow pore size of GO membranes and highly $CO_2$-philic properties of GO nanosheets, few-layered GO membranes exhibit ultrafast and $CO_2$ selective character in comparison with other gas molecules, which lead to outstanding $CO_2$ capture properties such as $CO_2/H_2$, $CO_2/CH_4$, and $CO_2/N_2$. This unusual gas transport through multi-layered GO nanosheets can explain a unique transport mechanism followed by an adsorption-facilitated diffusion behavior (i.e., surface diffusion mechanism). These findings provide the great insights for designing $CO_2$-selective membrane materials and the practical guidelines for gas transports through slit-like pores and lamellar structures.