Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.167

Gas Transport Behaviors through Multi-stacked Graphene Oxide Nanosheets  

Lee, Min Yong (Department of Energy Engineering, Hanyang University)
Park, Ho Bum (Department of Energy Engineering, Hanyang University)
Publication Information
Membrane Journal / v.27, no.2, 2017 , pp. 167-181 More about this Journal
Abstract
Graphene-based materials have been considered as a promising membrane material, due to its easy processability and atomic thickness. In this study, we studied on gas permeation behavior in few-layered GO membranes prepared by spin-coating method. The GO membrane structures were varied by using different GO flake sizes and GO solutions at various pH levels. The GO membranes prepared small flake size show more permeable and selective gas separation properties than large one due to shortening tortuosity. Also gas transport behaviors of the GO membranes are sensitive to slit width for gas diffusion because the pore size of GO membranes ranged from molecular sieving to Knudsen diffusion area. In particular, due to the narrow pore size of GO membranes and highly $CO_2$-philic properties of GO nanosheets, few-layered GO membranes exhibit ultrafast and $CO_2$ selective character in comparison with other gas molecules, which lead to outstanding $CO_2$ capture properties such as $CO_2/H_2$, $CO_2/CH_4$, and $CO_2/N_2$. This unusual gas transport through multi-layered GO nanosheets can explain a unique transport mechanism followed by an adsorption-facilitated diffusion behavior (i.e., surface diffusion mechanism). These findings provide the great insights for designing $CO_2$-selective membrane materials and the practical guidelines for gas transports through slit-like pores and lamellar structures.
Keywords
Gas separation; graphene oxide membranes; porous membranes; few-layered structures; surface diffusion transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Noy, "Kinetic model of gas transport in carbon nanotube channels", J. Phys. Chem. C, 117, 7656 (2013).   DOI
2 M. Majumder, N. Chopra, and B. J. Hinds, "Mass transport through carbon nanotube membranes in three different regimes: Ionic diffusion and gas and liquid flow", ACS Nano, 5, 3867 (2011).   DOI
3 B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers", J. Appl. Polym. Sci., 131, 39628 (2014).
4 H. Azeredo, "Nanocomposites for food packaging applications", Food Res. Int., 42, 1240 (2009).   DOI
5 M. A. Priolo, D. Gamboa, K. M. Holder, and J. C. Grunlan, "Super gas barrier of transparent polymer-clay multilayer ultrathin films", Nano Lett., 10, 4970 (2010).   DOI
6 H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013).   DOI
7 A. Torrisi, R. G. Bell, and C. Mellot-Draznieks, "Functionalized MOFs for enhanced $CO_2$ capture", Cryst. Growth Des., 10, 2839 (2010).   DOI
8 A. Torrisi, C. Mellot-Draznieks, and R. G. Bell, "Impact of ligands on $CO_2$ adsorption in metal-organic frameworks: First principles study of the interaction of $CO_2$ with functionalized benzenes. II. Effect of polar and acidic substituents", J. Chem. Phys., 132, 044705 (2010).   DOI
9 Y. Y. Liu and J. Wilcox, "Effects of surface heterogeneity on the adsorption of $CO_2$ in microporous carbons", Environ. Sci. Technol., 46, 1940 (2012).   DOI
10 S. J. You, S. Luzan, J. C. Yu, B. Sundqvist, and A. V. Talyzin, "Phase transitions in graphite oxide solvates at temperatures near ambient", J. Phys. Chem. Lett., 3, 812 (2012).   DOI
11 J. P. Zhao, S. F. Pei, W. C. Ren, L. B. Gao, and H. M. Cheng, "Efficient preparation of large-area graphene oxide sheets for transparent conductive films", ACS Nano, 4, 5245 (2010).   DOI
12 Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and graphene oxide: Synthesis, properties, and applications", Adv. Mater., 22, 3906 (2010).   DOI
13 L. J. Cote, F. Kim, and J. X. Huang, "Langmuirblodgett assembly of graphite oxide single layers", J. Am. Chem. Soc., 131, 1043 (2009).   DOI
14 B. Konkena and S. Vasudevan, "Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pK(a) measurements", J. Phys. Chem. Lett., 3, 867 (2012).   DOI
15 G. I. Titelman, V. Gelman, S. Bron, R. L. Khalfin, Y. Cohen, and H. Bianco-Peled, "Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide", Carbon, 43, 641 (2005).   DOI
16 O. C. Compton, D. A. Dikin, K. W. Putz, L. C. Brinson, and S. T. Nguyen, "Electrically conductive "Alkylated" graphene paper via vhemical teduction of smine-functionalized graphene oxide paper", Adv. Mater., 22, 892 (2010).   DOI
17 X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, and T. Tanaka, "Temperature-dependent electrical property transition of graphene oxide paper", Nanotechnology, 23, 455705 (2012).   DOI
18 K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, "Atomic and electronic structure of graphene-oxide", Nano. Lett., 9, 1058 (2009).   DOI
19 J. Zhao, S. Pei, W. Ren, L. Gao, and H.-M. Cheng, "Efficient preparation of large-area graphene oxide sheets for transparent conductive films", ACS Nano, 4, 5245 (2010).   DOI
20 H. B. Park, E. M. V. Hoek, and V. V. Tarabara, "Gas separation membranes: Encyclopedia of Membrane Science and Technology", John Wiley & Sons, Inc. (2013).
21 H. B. Park and Y. M. Lee, "Polymeric membrane materials and potential use in gas separation: Advanced Membrane Technology and Applications", John Wiley & Sons, Inc. (2008).
22 R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002).   DOI
23 W. J. Koros and G. K. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993).   DOI
24 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
25 D. Shekhawat, D. R. Luebke, and H. W. Pennline, "A review of carbon dioxide selective membranes", US Department of Energy (2003).
26 M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902 (1999).   DOI
27 R. M. de Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710 (1998).   DOI
28 O. C. Compton and S. T. Nguyen, "Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials", Small, 6, 711 (2010).   DOI
29 X. D. Qi, T. N. Zhou, S. Deng, G. Y. Zong, X. L. Yao, and Q. Fu, "Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization", J. Mater. Sci., 49, 1785 (2014).   DOI
30 R. Srinivasan, S. R. Auvil, and P. M. Burban, "Elucidating the mechanism(S) of gas-transport in poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes", J. Membr. Sci., 86, 67 (1994).   DOI
31 R. J. Hunter, "Electrokinetics and the zetapotential: Foundations of colloid science", Oxford University Press Inc, New York (2001).
32 D. M. Eitzman, R. R. Melkote, and E. L. Cussler, "Barrier membranes with tipped impermeable flakes", AIChE J., 42, 2 (1996).   DOI
33 J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. X. Huang, "Graphene oxide sheets at interfaces", J. Am. Chem. Soc., 132, 8180 (2010).   DOI
34 J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, "Graphene oxide dispersions in organic solvents", Langmuir, 24, 10560 (2008).   DOI
35 M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla, and Y. J. Chabal, "The role of intercalated water in multilayered graphene oxide", ACS Nano, 4, 5861 (2010).   DOI
36 T. Ungar, J. Gubicza, G. Ribarik, and A. Borbely, "Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals", J. Appl. Crystallogr., 34, 298 (2001).   DOI
37 M. Paranjape, P. F. Clarke, B. B. Pruden, D. J. Parrillo, C. Thaeron, and S. Sircar, "Separation of bulk carbon dioxide-hydrogen mixtures by selective surface flow membrane", Adsorption, 4, 355 (1998).   DOI
38 H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007).   DOI
39 B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999).   DOI
40 M. Mulder, "Basic Principles of membrane technology second edition", Kluwer Academic Pub (1996).
41 H. Q. Lin, E. Van Wagner, B. D. Freeman, L. G. Toy, and R. P. Gupta, "Plasticization-enhanced hydrogen purification using polymeric membranes", Science, 311, 639 (2006).   DOI
42 N. Y. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, and M. D. Guiver, "Polymer nanosieve membranes for $CO_2$-capture applications", Nat. Mater., 10, 372 (2011).   DOI
43 D. M. Sterescu, L. Bolhuis-Versteeg, N. F. A. van der Vegt, D. F. Stamatialis, and M. Wessling, "Novel gas separation membranes containing covalently bonded fullerenes", Macromol. Rapid Commun., 25, 1674 (2004).   DOI
44 B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, "Aligned multiwalled carbon nanotube membranes", Science, 303, 62 (2004).   DOI
45 J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034 (2006).   DOI
46 H. Li, Z. N. Song, X. J. Zhang, Y. Huang, S. G. Li, Y. T. Mao, H. J. Ploehn, Y. Bao, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95 (2013).   DOI
47 S. Sircar, M. Rao, and C. Thaeron, "Selective surface flow membrane for gas separation", Sep. Sci. Technol., 34, 2081 (1999).   DOI
48 D. E. Jiang, V. R. Cooper, and S. Dai, "Porous graphene as the ultimate membrane for gas separation", Nano. Lett., 9, 4019 (2009).   DOI
49 S. P. Koenig, L. D. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728 (2012).   DOI
50 R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442 (2012).   DOI
51 W. G. Kim and S. Nair, "Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges", Chem. Eng. Sci., 104, 908 (2013).   DOI
52 T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, "Ultrapermeable, reverse-selective nanocomposite membranes", Science, 296, 519 (2002).   DOI
53 D. M. Sterescu, D. F. Stamatialis, E. Mendes, M. Wubbenhorst, and M. Wessling, "Fullerene-modified poly(2,6-dimethyl-1,4-phenylene oxide) gas separation membranes: Why binding is better than dispersing", Macromolecules, 39, 9234 (2006).   DOI
54 A. Higuchi, T. Agatsuma, S. Uemiya, T. Kojima, K. Mizoguchi, I. Pinnau, K. Nagai, and B. D. Freeman, "Preparation and gas permeation of immobilized fullerene membranes", J. Appl. Polym. Sci., 77, 529 (2000).   DOI
55 H. Verweij, M. C. Schillo, and J. Li, "Fast mass transport through carbon nanotube membranes", Small, 3, 1996 (2007).   DOI
56 G. A. Polotskaya, S. V. Gladchenko, and V. N. Zgonnik, "Gas diffusion and dielectric studies of polystyrene-fullerene compositions", J. Appl. Polym. Sci., 85, 2946 (2002).   DOI
57 G. A. Polotskaya, D. V. Andreeva, and G. K. El'yashevich, "Investigation of gas diffusion through films of fullerene-containing poly(phenylene oxide)", Tech. Phys. Lett., 25, 555 (1999).   DOI
58 S. Iijima, "Helical microtubules of graphitic carbon", Nature, 354, 56 (1991).   DOI