DOI QR코드

DOI QR Code

Gas Transport Behaviors through Multi-stacked Graphene Oxide Nanosheets

적층된 산화그래핀 분리막의 기체 투과 거동 평가

  • Lee, Min Yong (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • 이민용 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2017.04.17
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

Graphene-based materials have been considered as a promising membrane material, due to its easy processability and atomic thickness. In this study, we studied on gas permeation behavior in few-layered GO membranes prepared by spin-coating method. The GO membrane structures were varied by using different GO flake sizes and GO solutions at various pH levels. The GO membranes prepared small flake size show more permeable and selective gas separation properties than large one due to shortening tortuosity. Also gas transport behaviors of the GO membranes are sensitive to slit width for gas diffusion because the pore size of GO membranes ranged from molecular sieving to Knudsen diffusion area. In particular, due to the narrow pore size of GO membranes and highly $CO_2$-philic properties of GO nanosheets, few-layered GO membranes exhibit ultrafast and $CO_2$ selective character in comparison with other gas molecules, which lead to outstanding $CO_2$ capture properties such as $CO_2/H_2$, $CO_2/CH_4$, and $CO_2/N_2$. This unusual gas transport through multi-layered GO nanosheets can explain a unique transport mechanism followed by an adsorption-facilitated diffusion behavior (i.e., surface diffusion mechanism). These findings provide the great insights for designing $CO_2$-selective membrane materials and the practical guidelines for gas transports through slit-like pores and lamellar structures.

그래핀 기반 소재는 높은 가공성과 초박성으로 인하여 분리막 소재로서 각광받고 있다. 본 연구에서는, 스핀 코팅법을 이용하여 제조된 산화그래핀 분리막의 기체 투과 거동을 평가하였다. 산화그래핀 분리막의 구조는 산화그래핀의 크기와 산화그래핀 용액의 pH 조절을 통하여 조절될 수 있다. 산화그래핀의 크기가 작을수록 굴곡률이 작아짐에 따라 분리막의 기체 투과도 및 선택도가 증가하는 경향을 보인다. 또한 산화그래핀에서의 기체 투과 거동은 적층된 산화그래핀 사이의 채널크기에 따라 영향을 받는다. 특히 산화그래핀 분리막의 좁은 기공과 이산화탄소 선택적인 산화그래핀 자체의 특성으로 인하여 산화그래핀 분리막은 이산화탄소에 대한 높은 투과도 및 선택성을 가지며, 이는 이산화탄소 포집에 적합한 특성을 가진다. 이러한 산화그래핀 분리막의 특이한 기체 투과 거동은 흡착-촉진 확산 거동(표면 확산 기작)으로 설명될 수 있다. 본 연구를 통하여 이산화탄소 선택성 분리막 소재 설계와 슬릿 형태의 기공과 적층 구조를 가진 분리막을 통한 기체 투과 거동 연구가 활발히 이루어질 것으로 기대한다.

Keywords

References

  1. H. B. Park, E. M. V. Hoek, and V. V. Tarabara, "Gas separation membranes: Encyclopedia of Membrane Science and Technology", John Wiley & Sons, Inc. (2013).
  2. H. B. Park and Y. M. Lee, "Polymeric membrane materials and potential use in gas separation: Advanced Membrane Technology and Applications", John Wiley & Sons, Inc. (2008).
  3. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  4. W. J. Koros and G. K. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
  5. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  6. D. Shekhawat, D. R. Luebke, and H. W. Pennline, "A review of carbon dioxide selective membranes", US Department of Energy (2003).
  7. M. B. Shiflett and H. C. Foley, "Ultrasonic deposition of high-selectivity nanoporous carbon membranes", Science, 285, 1902 (1999). https://doi.org/10.1126/science.285.5435.1902
  8. R. M. de Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710 (1998). https://doi.org/10.1126/science.279.5357.1710
  9. B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548
  10. M. Mulder, "Basic Principles of membrane technology second edition", Kluwer Academic Pub (1996).
  11. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  12. H. Q. Lin, E. Van Wagner, B. D. Freeman, L. G. Toy, and R. P. Gupta, "Plasticization-enhanced hydrogen purification using polymeric membranes", Science, 311, 639 (2006). https://doi.org/10.1126/science.1118079
  13. N. Y. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, and M. D. Guiver, "Polymer nanosieve membranes for $CO_2$-capture applications", Nat. Mater., 10, 372 (2011). https://doi.org/10.1038/nmat2989
  14. D. M. Sterescu, L. Bolhuis-Versteeg, N. F. A. van der Vegt, D. F. Stamatialis, and M. Wessling, "Novel gas separation membranes containing covalently bonded fullerenes", Macromol. Rapid Commun., 25, 1674 (2004). https://doi.org/10.1002/marc.200400296
  15. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, "Aligned multiwalled carbon nanotube membranes", Science, 303, 62 (2004). https://doi.org/10.1126/science.1092048
  16. J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034 (2006). https://doi.org/10.1126/science.1126298
  17. D. E. Jiang, V. R. Cooper, and S. Dai, "Porous graphene as the ultimate membrane for gas separation", Nano. Lett., 9, 4019 (2009). https://doi.org/10.1021/nl9021946
  18. S. P. Koenig, L. D. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728 (2012). https://doi.org/10.1038/nnano.2012.162
  19. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442 (2012). https://doi.org/10.1126/science.1211694
  20. H. Li, Z. N. Song, X. J. Zhang, Y. Huang, S. G. Li, Y. T. Mao, H. J. Ploehn, Y. Bao, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95 (2013). https://doi.org/10.1126/science.1236686
  21. W. G. Kim and S. Nair, "Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges", Chem. Eng. Sci., 104, 908 (2013). https://doi.org/10.1016/j.ces.2013.09.047
  22. T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, "Ultrapermeable, reverse-selective nanocomposite membranes", Science, 296, 519 (2002). https://doi.org/10.1126/science.1069580
  23. D. M. Sterescu, D. F. Stamatialis, E. Mendes, M. Wubbenhorst, and M. Wessling, "Fullerene-modified poly(2,6-dimethyl-1,4-phenylene oxide) gas separation membranes: Why binding is better than dispersing", Macromolecules, 39, 9234 (2006). https://doi.org/10.1021/ma061300p
  24. A. Higuchi, T. Agatsuma, S. Uemiya, T. Kojima, K. Mizoguchi, I. Pinnau, K. Nagai, and B. D. Freeman, "Preparation and gas permeation of immobilized fullerene membranes", J. Appl. Polym. Sci., 77, 529 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<529::AID-APP8>3.0.CO;2-Y
  25. G. A. Polotskaya, S. V. Gladchenko, and V. N. Zgonnik, "Gas diffusion and dielectric studies of polystyrene-fullerene compositions", J. Appl. Polym. Sci., 85, 2946 (2002). https://doi.org/10.1002/app.10906
  26. G. A. Polotskaya, D. V. Andreeva, and G. K. El'yashevich, "Investigation of gas diffusion through films of fullerene-containing poly(phenylene oxide)", Tech. Phys. Lett., 25, 555 (1999). https://doi.org/10.1134/1.1262551
  27. S. Iijima, "Helical microtubules of graphitic carbon", Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  28. H. Verweij, M. C. Schillo, and J. Li, "Fast mass transport through carbon nanotube membranes", Small, 3, 1996 (2007). https://doi.org/10.1002/smll.200700368
  29. A. Noy, "Kinetic model of gas transport in carbon nanotube channels", J. Phys. Chem. C, 117, 7656 (2013). https://doi.org/10.1021/jp4005407
  30. M. Majumder, N. Chopra, and B. J. Hinds, "Mass transport through carbon nanotube membranes in three different regimes: Ionic diffusion and gas and liquid flow", ACS Nano, 5, 3867 (2011). https://doi.org/10.1021/nn200222g
  31. B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers", J. Appl. Polym. Sci., 131, 39628 (2014).
  32. H. Azeredo, "Nanocomposites for food packaging applications", Food Res. Int., 42, 1240 (2009). https://doi.org/10.1016/j.foodres.2009.03.019
  33. M. A. Priolo, D. Gamboa, K. M. Holder, and J. C. Grunlan, "Super gas barrier of transparent polymer-clay multilayer ultrathin films", Nano Lett., 10, 4970 (2010). https://doi.org/10.1021/nl103047k
  34. H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013). https://doi.org/10.1126/science.1236098
  35. A. Torrisi, R. G. Bell, and C. Mellot-Draznieks, "Functionalized MOFs for enhanced $CO_2$ capture", Cryst. Growth Des., 10, 2839 (2010). https://doi.org/10.1021/cg100646e
  36. A. Torrisi, C. Mellot-Draznieks, and R. G. Bell, "Impact of ligands on $CO_2$ adsorption in metal-organic frameworks: First principles study of the interaction of $CO_2$ with functionalized benzenes. II. Effect of polar and acidic substituents", J. Chem. Phys., 132, 044705 (2010). https://doi.org/10.1063/1.3276105
  37. Y. Y. Liu and J. Wilcox, "Effects of surface heterogeneity on the adsorption of $CO_2$ in microporous carbons", Environ. Sci. Technol., 46, 1940 (2012). https://doi.org/10.1021/es204071g
  38. S. J. You, S. Luzan, J. C. Yu, B. Sundqvist, and A. V. Talyzin, "Phase transitions in graphite oxide solvates at temperatures near ambient", J. Phys. Chem. Lett., 3, 812 (2012). https://doi.org/10.1021/jz300162u
  39. Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and graphene oxide: Synthesis, properties, and applications", Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  40. L. J. Cote, F. Kim, and J. X. Huang, "Langmuirblodgett assembly of graphite oxide single layers", J. Am. Chem. Soc., 131, 1043 (2009). https://doi.org/10.1021/ja806262m
  41. B. Konkena and S. Vasudevan, "Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pK(a) measurements", J. Phys. Chem. Lett., 3, 867 (2012). https://doi.org/10.1021/jz300236w
  42. G. I. Titelman, V. Gelman, S. Bron, R. L. Khalfin, Y. Cohen, and H. Bianco-Peled, "Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide", Carbon, 43, 641 (2005). https://doi.org/10.1016/j.carbon.2004.10.035
  43. O. C. Compton, D. A. Dikin, K. W. Putz, L. C. Brinson, and S. T. Nguyen, "Electrically conductive "Alkylated" graphene paper via vhemical teduction of smine-functionalized graphene oxide paper", Adv. Mater., 22, 892 (2010). https://doi.org/10.1002/adma.200902069
  44. J. P. Zhao, S. F. Pei, W. C. Ren, L. B. Gao, and H. M. Cheng, "Efficient preparation of large-area graphene oxide sheets for transparent conductive films", ACS Nano, 4, 5245 (2010). https://doi.org/10.1021/nn1015506
  45. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, and T. Tanaka, "Temperature-dependent electrical property transition of graphene oxide paper", Nanotechnology, 23, 455705 (2012). https://doi.org/10.1088/0957-4484/23/45/455705
  46. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, "Atomic and electronic structure of graphene-oxide", Nano. Lett., 9, 1058 (2009). https://doi.org/10.1021/nl8034256
  47. J. Zhao, S. Pei, W. Ren, L. Gao, and H.-M. Cheng, "Efficient preparation of large-area graphene oxide sheets for transparent conductive films", ACS Nano, 4, 5245 (2010). https://doi.org/10.1021/nn1015506
  48. O. C. Compton and S. T. Nguyen, "Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials", Small, 6, 711 (2010). https://doi.org/10.1002/smll.200901934
  49. X. D. Qi, T. N. Zhou, S. Deng, G. Y. Zong, X. L. Yao, and Q. Fu, "Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization", J. Mater. Sci., 49, 1785 (2014). https://doi.org/10.1007/s10853-013-7866-8
  50. R. Srinivasan, S. R. Auvil, and P. M. Burban, "Elucidating the mechanism(S) of gas-transport in poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes", J. Membr. Sci., 86, 67 (1994). https://doi.org/10.1016/0376-7388(93)E0128-7
  51. D. M. Eitzman, R. R. Melkote, and E. L. Cussler, "Barrier membranes with tipped impermeable flakes", AIChE J., 42, 2 (1996). https://doi.org/10.1002/aic.690420103
  52. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. X. Huang, "Graphene oxide sheets at interfaces", J. Am. Chem. Soc., 132, 8180 (2010). https://doi.org/10.1021/ja102777p
  53. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, "Graphene oxide dispersions in organic solvents", Langmuir, 24, 10560 (2008). https://doi.org/10.1021/la801744a
  54. R. J. Hunter, "Electrokinetics and the zetapotential: Foundations of colloid science", Oxford University Press Inc, New York (2001).
  55. M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla, and Y. J. Chabal, "The role of intercalated water in multilayered graphene oxide", ACS Nano, 4, 5861 (2010). https://doi.org/10.1021/nn101844t
  56. T. Ungar, J. Gubicza, G. Ribarik, and A. Borbely, "Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals", J. Appl. Crystallogr., 34, 298 (2001). https://doi.org/10.1107/S0021889801003715
  57. M. Paranjape, P. F. Clarke, B. B. Pruden, D. J. Parrillo, C. Thaeron, and S. Sircar, "Separation of bulk carbon dioxide-hydrogen mixtures by selective surface flow membrane", Adsorption, 4, 355 (1998). https://doi.org/10.1023/A:1008802320863
  58. S. Sircar, M. Rao, and C. Thaeron, "Selective surface flow membrane for gas separation", Sep. Sci. Technol., 34, 2081 (1999). https://doi.org/10.1081/SS-100100757