Browse > Article

Development of Composite Hollow Fiber Membranes for Olefin Off-gas Recovery  

Kim Jeong-Hoon (Green Chemistry and Environmental Biotechnology, University of Science and Technology, Interface Materials & Eng. Lab. Division of Advanced Chemical Technology)
Choi Seung-Hak (Green Chemistry and Environmental Biotechnology, University of Science and Technology)
Lee Soo-Bok (Green Chemistry and Environmental Biotechnology, University of Science and Technology)
Publication Information
Membrane Journal / v.15, no.2, 2005 , pp. 157-164 More about this Journal
Abstract
In this study, composite hollow fiber membranes were developed for the recovery of olefin monomers in polyolefin industry off-gases. Polyetherimide (PEI) hollow fiber support membranes were fabricated from spinning solutions containing PEI, NMP and polyethylene glycol (PEG). The influence of dope solution and inner coagulant composition on the permeation properties and structure of hollow fiber supports was examined. PDMS was used as a selective layer and coated on PEI hollow fiber support. The thickness of active layer was controlled by changing coating solution concentration. The permeation properties of hollow fiber supports and composite membranes were characterized with a pure gas permeation test. The optimized composite hollow fiber membrane has $10\;{\mu}m$ selective layer and shows excellent separation performance; the ideal selectivity of olefins over nitrogen is in the following order: 1-butylene (6.4) > propylene (17) > ethylene (97), which selectivity data are similar to the intrinsic olefin/nitrogen selectivities of PDMS. This confirms that the new composite hollow fiber membranes suitable for olefin off-gas recovery has developed successfully.
Keywords
polydimethylsiloxane; composite hollow fiber; olefin; condensable gases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. W. Baker, K. A. Lokhandwala, and I. Pinnau, 'Ethylene/nitrogen separation process', US Patent 5,879,431, March 9 (1999)
2 R. W. Baker, K. A. Lokhandwala, D. Gottschlich, and M. L. Jacobs, 'Separation process combining condensation, membrane separation and flash evaporation', US Patent 5,755,855, May 26 (1998)
3 R. W. Baker, 'Membrane Technology and Application', pp. 329-336, McGraw-Hill, New York (2000)
4 J. H. Kim and K. H. Lee, 'Effect of PEG additive on membrane formation by phase inversion', J. Membr. Sci., 138, 153 (1998)
5 I. Blume, K. V. Peinemann, I. Pinnau, and J. G. Wijmans, 'Composite membranes for fluid separations' US Patent 5,085,776, February 4 (1992)
6 http://www.kpia.or.kr/industry/view03.htm. Jun., 1 (2005)
7 S. H. Choi, J. H. Kim, I. J. Park, S. B. Lee, and D. J. Kang, 'Effect of support resistance and coating thickness on ethylene/nitrogen separation of PDMS composite membranes', Membrane J, 14, 57 (2004)
8 R. W. Baker, J. G. Wijmans, and J. H. Kaschemekat, 'The design of membrane vapor-gas separation systems', J. Membr. Sci., 151, 55 (1998)
9 I. Blume, P. J. F. Schwering, M. H. V. Mulder, and C. A. Smolders, 'Vapor sorption and permeation properties of poly (dimethylsiloxane) films', J. Membr. Sci., 61, 85 (1991)
10 R. W. Baker, J. Kaschemekat, and J. G. Wijmans, 'Membrane systems for profitable VOC recovery', CHEMIECH, July, 37 (1996)
11 R. Ahlers and R. Rautenbach, 'The recovery of organic vapors from process air with gas permeation membranes' , Studies in Environmental Sci. , 61, 387 (1994)
12 I. Blume, K. V. Peinemann, I. Pinnau, and J. G. Wijmans, 'Composite membranes for fluid separations' US Patent 4,990,255, February 5 (1991)
13 M. Leemann, G. Eigengerger, and H. Strathmann, 'Vapour permeation for the recovery of organic solvents from waste air streams: separation capacities and process optimization', J. Membr. Sci., 113, 313 (1996)
14 K. Kimmerle, C. M. Bell, W. Gudematsch, and H. Chmiel, 'Solvent recovery from air', J. Membr. Sci., 36, 477 (1988)
15 M. Mulder, 'Basic principles of membrane technology', pp. 465-474, Kluwer Academic Publishers, Dordrecht (1996)
16 R. W. Baker, N. Yoshioka, J. M. Mohr, and A. J. Khan, 'Separation of organic vapors from air', J. Membr. Sci., 31, 259 (1987)
17 K. Matsumoto, K. Katsumi, T. Kuroda, K. Inoue, and A. Iwama, 'Membrane process for organic vapor recovery from air', Polym. J, 23, 491 (1991)   DOI   ScienceOn
18 K. Ebert, D. Fritsch, J. Koll, and C. Tjahjawiguna, 'Influence of inorganic fillers on the compaction behavior of porous polymer based membranes', J. Membr. Sci., 233, 71 (2004)
19 I. Blume, K. V. Peinemann, I. Pinnau, and J. G. Wijmans, 'Composite membranes for fluid separations', US Patent 4,931,181, June 5 (1990)
20 C. K. Yeom, S. H. Lee, H. Y. Song, and J. M. Lee, 'Vapor permeation of a series of $VOCs/N_2$ mixtures through PDMS membrane', J. Membr. Sci., 198, 129 (2002)
21 G. Obuskovic, S. Majumdar, and K. K. Sirkar, 'Highly VOC-selective hollow fiber membranes for separation by vapour permeation', J. Membr. Sci., 217, 99 (2003)