• Title/Summary/Keyword: Coated structure

Search Result 942, Processing Time 0.024 seconds

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

Fabrication of Ni-Cr-Al Metal Foam-Supported Catalysts for the Steam Methane Reforming (SMR), and its Mechanical Stability and Hydrogen Yield Efficiency (수증기 메탄 개질 반응을 이용한 수소 생산용 Ni-Cr-Al 다공체 지지 촉매의 제조, 기계적 안정성 및 수소 환원 효율)

  • Kim, Kyu-Sik;Kang, Tae-Hoon;Kong, Man Sik;Park, Man-Ho;Yun, Jung-Yeul;Ahn, Ji Hye;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • Ni-Cr-Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol-gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni-Cr-Al foam without cracks or spallation. The measured compressive yield strengths are 2-3 MPa at room temperature and 1.5-2.2 MPa at 750℃ regardless of sample size. The specimens exhibit a weight loss of up to 9-10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.

Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination (막증류 담수화를 위한 친수성/소수성 이중 표면 코팅)

  • Kim, Hye-Won;Lee, Seungheon;Jeong, Seongpil;Byun, Jeehye
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.3
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

Slot-die Coating Method for Manufacturing Large-area Perovskite Solar Cell (대면적 페로브스카이트 태양전지 제작을 위한 슬롯-다이코팅 방법)

  • Oh, Ju-young;Ha, Jae-jun;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.918-925
    • /
    • 2021
  • The perovskite solar cell is a next-generation solar cell that replaces the existing silicon solar cell. It is a solar cell device using an organic-inorganic hybrid material having a perovskite structure as a photoactive layer. It has advantages for the process and has shown rapid efficiency improvement over the past decade. In the process of commercialization of such perovskite solar cells, research and development for a large-area coating method should be carried out. As one of the large-area perovskite solar cell large-area coating methods, the slot-die coating method was studied. By using a meniscus to pass over the substrate and coating the solution, the 3D printer was equipped with a meniscus so that it could be coated. Variables that act during coating include bed temperature, coating speed, N2 blowing interval, N2 blowing height, N2 blowing intensity, etc. By controlling these, the perovskite absorption layer was manufactured and the coating conditions for manufacturing large-area devices were optimized.

TiO2 Photocatalytic Reaction on Glass Fiber for Total Organic Carbon Analysis (총유기탄소 분석을 위한 유리섬유를 이용한 이산화티타늄 광촉매 반응)

  • Park, Buem Keun;Lee, Young-Jin;Shin, Jeong Hee;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2022
  • Currently, the demand for real-time monitoring of water quality has increased dramatically. Total organic carbon (TOC) analysis is a suitable method for real-time analysis compared with conventional biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods in terms of analysis time. However, this method is expensive because of the complicated internal processes involved. The photocatalytic titanium dioxide (TiO2)-based TOC method is simpler as it omits more than three preprocessing steps. This is because it reacts only with organic carbon (OC) without extra processes. We optimized the rate between the TiO2 photocatalyst and binder solution and the TiO2 concentration. The efficiency was investigated under 365 nm UV exposure onto a TiO2 coated substrate. The optimized conditions were sufficient to apply a real-time monitoring system for water quality with a short reaction time (within 10 min). We expect that it can be applied in a wide range of water quality monitoring industries.

Enhancement of mechanical and durability properties of preplaced lightweight aggregate concrete

  • Bo Peng;Jiantao Wang;Xianzheng Dong;Feihua Yang;Chuming Sheng;Yunpeng Liu
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the effect of two types of aggregates (fly ash aggregate and shale aggregate) on the density, strength, and durability of preplaced lightweight aggregate concrete (PLWAC) was studied. The results showed that the 7 - 28 days strength of concrete prepared with fly ash aggregates (high water absorption rate) significantly increased, which could attribute to the long-term water release of fly ash aggregates by the refined pore structure. In contrast, the strength increase of concrete prepared with shale aggregates (low water absorption rate) is not apparent. Although PLWAC prepared with fly ash aggregates has a lower density and higher strength (56.8 MPa @ 1600 kg/m3), the chloride diffusion coefficient is relatively high, which could attribute to the diffusion paths established by connected porous aggregates and the negative over-curing effect. Compared to the control group, the partial replacement of fly ash aggregates (30%) with asphalt emulsion (20% solid content) coated aggregates can reduce the chloride diffusion coefficient of concrete by 53.6% while increasing the peak load obtained in a three-point bending test by 107.3%, fracture energy by 30.3% and characteristic length by 103.5%. The improvement in concrete performance could be attributed to the reduction in the water absorption rate of aggregates and increased energy absorption by polymer during crack propagation.

Effects of antibacterial mouth rinses on multiple oral biofilms model (구강세정제가 다중 구강 바이오필름 모델에 미치는 영향)

  • Soo-Kyung Jun;Young-Suk Choi
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • Objectives: To confirm the antibacterial effects of each mouth rinse on multiple oral biofilms in vitro. Methods: The antibacterial effects of different mouth rinses were examined by ATP and counted colony forming units (CFU). Preformed oral biofilms on saliva coated hydroxyapatite (sHA) disks were treated with essential oil and saline; then, the multiple oral biofilms were observed by Scanning electron microscope (SEM). RNA sequencing analysis was performed on total RNA isolated from old biofilms of P. intermedia ATCC 49046. Results: In the CFU measured result compared to controls, preformed multiple oral biofilms were reduced from a low of 39.0% to 95.7% (p<0.05). The size of bacterial cells changed after treatment with the essential oil, and some of the cells ruptured into small pieces of cell debris. Gene expression in P. intermedia ATCC 49046 significantly altered in RNA transcribed and protein translated genes after exposure to essential oil. Conclusions: Mouth rinse solutions with different ingredients had different antibacterial effects and may alter surface structure and gene expression as determined by RNA sequencing.

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review (미생물막 형성을 막기 위한 살균 물질 함유 막: 총설)

  • Son, Soohyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.

A Study on the Output Performance of Solid-solid Triboelectric Energy Harvesting Depending on the Surface Morphology and Thickness of AAO (AAO 두께 및 표면 형상에 따른 고체-고체 마찰 대전 기반 에너지 하베스팅 발전 성능에 관한 연구)

  • Kwangseok Lee;Woonbong Hwang
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.224-229
    • /
    • 2023
  • Due to the increasing demand for wearable devices and miniaturization of various electronic devices, the trend of nanofabrication in IT devices is underway. In order to overcome the limitations of battery size and capacity, there has been a lot of research interest in energy harvesting technology, also known as triboelectric nanogenerator. AAO(Anodic Aluminum oxide) coated with fluoride is a structure that includes an anode layer with high properties in the triboelectric series, an dielectric layer that helps transfer the triboelectrically generated charges to the electrode without loss, and the electrode. For these reasons, AAO has been a lot of research on its application to frictional energy harvesting nanogenerators. In this work, we analyzed the correlation of AAO between the surface morphology and thickness of the insulating layer by utilizing aluminum oxide, which is advantageous for the application of triboelectric nanogenerators, and adjusting the thickness of the insulating layer.

Comparative effects of proteases on performance, carcass traits and gut structure of broilers fed diets reduced in protein and amino acids

  • Alexandra L. Wealleans;Roba Abo Ashour;Majdi A. Abu Ishmais;Sadiq Al-Amaireh;David Gonzalez-Sanchez
    • Journal of Animal Science and Technology
    • /
    • v.66 no.3
    • /
    • pp.457-470
    • /
    • 2024
  • This study aimed to evaluate the effect of supplementing different protease enzymes on growth performance, intestinal morphology, and selected carcass traits in broilers fed diets reduced 3.5% in crude protein (CP) and amino acids (AA). One thousand one-day-old Ross 308 broilers (41 g) were assigned to five dietary treatments with ten replicates of 20 birds each: a positive control (PC) diet formulated to meet Ross 308 AA requirements, a negative control (NC) diet reformulated to provide 3.5% lower CP and AA compared to PC, NC supplemented with a multi-protease (PR1) solution, containing 3 different coated proteases produced from Aspergillus niger, Bacillus subtilis and Bacillus licheniformis, NC supplemented with a serine protease (PR2) produced from Bacillus licheniformis, and NC supplemented with an alkaline protease (PR3) produced from Bacillus licheniformis. At slaughter, 40 birds per treatment were used to assess the effect of the different treatments on carcass traits. At 32 days, samples of the duodenum, jejunum, and ileum of 10 birds per treatment were collected for intestinal morphology evaluation. Birds fed PC and NC supplemented with multi-protease exhibited better (p < 0.05) feed efficiency compared to NC and NC supplemented with all the other protease enzymes. Multi-protease supplementation was linked to the highest (p < 0.05) carcass weight and yield. There were significant differences (p < 0.05) between treatments in all gut segments, with PC, PR1, PR2, and PR3 exhibiting longer villi height (VH) compared to NC. This study demonstrates that 3.5% reduction of CP and AA negatively affected for the overall period feed efficiency, carcass yield, and intestinal morphology. The supplementation of the multi-protease restored feed efficiency and improved carcass yield.