Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.1.23

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review  

Son, Soohyun (Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.32, no.1, 2022 , pp. 23-32 More about this Journal
Abstract
Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.
Keywords
biocidal membrane; biofilm; antibacterial; zwitterion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Yi, Y. Zou, S. Sun, F. Dai, Y. Si, and G. Sun, "Rechargeable photoactive silk-derived nanofibrous membranes for degradation of reactive red 195", ACS Sustainable Chem. Eng., 7, 986 (2019).   DOI
2 R. Bai, Q. Zhang, L. Li, P. Li, Y. J. Wang, O. Simalou, Y. Zhang, G. Gao, and A. Dong, "N-halamine-containing electrospun fibers kill bacteria via a contact/release co-determined antibacterial pathway", ACS Appl. Mater. Interfaces, 8, 31530 (2016).   DOI
3 G. Li, B. Liu, L. Bai, Z. Shi, X. Tang, J. Wang, H. Liang, Y. Zhang, and B. Van der Bruggen, "Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation", Sep. Purif. Technol., 238, 116412 (2020).   DOI
4 C. Liu, J. Lee, J. Ma, and M. Elimelech, "Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer", Environ. Sci. Technol., 51, 2161 (2017).   DOI
5 X. Yu, Y. Yang, W. Yang, X. Wang, X. Liu, F. Zhou, and Y. Zhao, "One-step zwitterionization and quaternization of thick PDMAEMA layer grafted through subsurface-initiated ATRP for robust antibiofouling and antibacterial coating on PDMS", J. Colloid Interface Sci., 610, 234 (2022).   DOI
6 J. Yang, X. Zhu, J. Lin, Q. Wang, L. Zhang, N. Yang, L. Lin, J. Zhao, Y. Zhao, and L. Chen, "Integration of a hydrophilic hyperbranched polymer and a quaternary ammonium compound to mitigate membrane biofouling", ACS Applied Polymer Materials, 4, 229 (2021).   DOI
7 Y. Si, Z. Zhang, W. Wu, Q. Fu, K. Huang, N. Nitin, B. Ding, and G. Sun, "Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications", Sci. Adv., 4, 1 (2018).
8 X. Zhao, Y. Su, Y. Li, R. Zhang, J. Zhao, and Z. Jiang, "Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances", J. Membr. Sci., 450, 111 (2014).   DOI
9 C. Liu, A. F. Faria, J. Jackson, Q. He, and J. Ma, "Enhancing the anti-fouling and fouling removal properties of thin-film composite membranes through an intercalated functionalization method", Environ. Sci. Water Res. Technol., 7, 1336 (2021).   DOI
10 R. Yu, R. Zhu, J. Jiang, R. Liang, X. Liu, and G. Liu, "Mussel-inspired surface functionalization of polyamide microfiltration membrane with zwitterionic silver nanoparticles for efficient anti-biofouling water disinfection", J. Colloid Interface Sci., 598, 302 (2021).   DOI
11 C. K. S. Haresco, M. B. M. Y. Ang, B. T. Doma, S.-H. Huang, and K.-R. Lee, "Performance enhancement of thin-film nanocomposite nanofiltration membranes via embedment of novel polydopamine-sulfobetaine methacrylate nanoparticles", Sep. Purif. Technol., 274, 119022 (2021).   DOI
12 Y. Ma, Z. Zhang, N. Nitin, and G. Sun, "Integration of photo-induced biocidal and hydrophilic antifouling functions on nanofibrous membranes with demonstrated reduction of biofilm formation", J. Colloid Interface Sci., 578, 779 (2020).   DOI
13 G. Ye, J. Lee, F. Perreault, and M. Elimelech, "Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated "defending" and "attacking" strategies against biofouling", ACS Appl. Mater. Interfaces, 7, 23069 (2015).   DOI
14 Y. Si, J. Li, C. Zhao, Y. Deng, Y. Ma, D. Wang, and G. Sun, "Biocidal and rechargeable N-halamine nanofibrous membranes for highly efficient water disinfection", ACS Biomater. Sci. Eng., 3, 584 (2017).
15 F. Wang, T. Zheng, P. Wang, M. Chen, Z. Wang, H. Jiang, and J. Ma, "Enhanced water permeability and antifouling property of coffee-ring-textured polyamide membranes by in situ incorporation of a zwitterionic metal-organic framework", Environ. Sci. Technol., 55, 5324 (2021).   DOI
16 M. M. Zhu, Y. Fang, Y. C. Chen, Y. Q. Lei, L. F. Fang, B. K. Zhu, and H. Matsuyama, "Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers", J. Colloid Interface Sci., 584, 225 (2021).   DOI
17 J. Gao, E. M. White, Q. Liu, and J. Locklin, "Evidence for the phospholipid sponge effect as the biocidal mechanism in surface-bound polyquaternary ammonium coatings with variable cross-linking density", ACS Appl. Mater., Interfaces, 9, 7745 (2017).   DOI
18 W. S. Yun, J. W. Rim, and Y. J. Cho, "Restoration of membrane performance for damaged reverse osmosis membranes through in-situ healing", Membr. J., 29, 96 (2019).   DOI
19 B. Gautam, S. A. Ali, J. T. Chen, and H. H. Yu, "Hybrid "kill and Release" Antibacterial cellulose papers obtained via surface-initiated atom transfer radical polymerization", ACS Appl. Bio Mater., 4, 7893 (2021).   DOI
20 S. Li, Z. Guo, H. Zhang, X. Li, W. Li, P. Liu, Y. Ren, and X. Li, "ABC triblock copolymers antibacterial materials consisting of fluoropolymer and polyethylene glycol antifouling block and quaternary ammonium salt sterilization block", ACS Appl. Bio Mater., 4, 3166 (2021).   DOI
21 D-E. Kwon and J, Kim, "Forward osmosis membrane to treat effluent from anaerobic fluidized bed bioreactor for wastewater reuse applications", Membr. J., 28, 196 (2018).   DOI
22 N. M. Justino, D. S. Vicentini, K. Ranjbari, M. Bellier, D. J. Nogueira, W. G. Matias, and F. Perreault, "Nanoparticle-templated polyamide membranes for improved biofouling resistance", Environ. Sci. Nano, 8, 565 (2021).   DOI
23 C. Liu, D. Song, W. Zhang, Q. He, X. Huangfu, S. Sun, Z. Sun, W. Cheng, and J. Ma, "Constructing zwitterionic polymer brush layer to enhance gravity-driven membrane performance by governing biofilm formation", Water Res., 168, 115181 (2020).   DOI
24 Y. Wang, F. Wang, H. Zhang, B. Yu, H. Cong, and Y. Shen, "Antibacterial material surfaces/interfaces for biomedical applications", Appl. Mater., 25, 101192 (2021).