• 제목/요약/키워드: Coasting

검색결과 66건 처리시간 0.031초

에너지소비를 최소로 하는 고속전철 최적제어 전략 (Optimal Control Strategy of Korea High Speed Train Prototype for the Minimization of Energy Consumption)

  • 이태형;박춘수;서승일;김기환;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1385-1387
    • /
    • 2004
  • This paper presents a modelling methodology using fuzzy logic and train performance simulation for determining an economical running pattern for a high speed train which minimizes energy consumption under an given trip margin. The economical running pattern is defined with an economical maximum speed in traction phase, a speed at the end of coasting. As a case study, the simulation is carried out for an economical run of korea high speed train prototype, and the results of fuzzy model described.

  • PDF

미사일과 항공기간의 추적.회피 게임 (A Pursuit-Evasion Game Between a Missile and an Aircraft)

  • 변지준;서진헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.946-948
    • /
    • 1996
  • In this paper, we consider a 2-dimensional pursuit-evasion game between a maneuvering target and a coasting missile using qualitative game theory. The optimal evasion algorithm of the target and the optimal guidance algorithm of the missile are determined and the barrier trajectories of this game are obtained through computer simulation. The optimal strategy of the missile and target is to turn toward the final line of sight direction using maximum input and maintain its direction. The capture set of the missile can be obtained by backward integration from the BUP.

  • PDF

틸팅열차 운행 중 고조파 측정 및 분석에 관한 연구 (A Study of Harmonic Measurement and Analysis during Tilting Train express Operation)

  • 강철;임재찬;허재선;김재철;이수길;한성호;이은규
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.297-300
    • /
    • 2009
  • Recently, TTX(Tilting Train eXpress), EMU (Electric Multiple Unit) has operated test. Presently, electric problems(harmonic, voltage variation etc) of TTX are studying briskly. Henceforth, electrical harmonic study of TTX will operate on the rail actually is needed. In this paper, we detected electrical harmonic of operating TTX. In addition to we analyzed and estimated electrical harmonic regarding TTX's coasting, acceleration and braking state.

  • PDF

Design of Optimal control for Automatic Train Operation system in EMU

  • Han, Seong-Ho;Lee, Su-Gil;Kim, Soo-Gon;Lee, Woo-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.47.4-47
    • /
    • 2001
  • The automatic-driverless operation, a very important technique for metro railways, is necessary for achieving higher safety, greater reliability, and bigger transport capacity. To achieve these things, we have to build up the system design and tasting techniques for the railway system operation. These techniques are related to the onboard train control and communication systems which include TCMS(Train Control and Monitoring System), ATO(automatic train Operation), ATC(Automatic train Control), and TWC(Train to wayside communication). These sub-systems should interface not only with each other but also between the sub-systems and the signal system on the ground. For the saving of energy, we designed coasting strategy of ATO system, In this paper, we developed ATO system and tested on the test line and ...

  • PDF

고속철도 차량의 경제 주행 시뮬레이션 (Simulation of An Economical Run for High Speed Train)

  • 황희수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.161-168
    • /
    • 1998
  • This paper presents an simulation methdology for determining an economical running pattern for a high speed train which minimizes energy consumption under an given trip time margin. The economical running pattern is defined with an economical maximum speed in traction phase, a speed at the end of coasting and a speed at the end of regenerative braking alone in braking phase. An economical run for subways is also described. As a case study, the simulation is carried out fer an economical run of high speed NamSeoul-Pusan line, and the results described. To do this, train performance simulation program is built and extended to be able to find an economical running pattern and then to simulate the defined economical run.

  • PDF

가속도/감속도 변화율에 따른 레일마모 현상에 관한 연구 (A Study of Rail Wear by Change of Acceleration and Deceleration)

  • 하관용;김희식
    • 한국철도학회논문집
    • /
    • 제10권5호
    • /
    • pp.607-612
    • /
    • 2007
  • 본 논문에서는 도시철도 차량의 운전모드에 의한 레일마모 현상을 역행, 타행, 제동 세구간 별로 나누어 레일 마모 현상을 비교 분석하였고, 또한 ATO 로깅데이터에서 실제 운행한 속도데이터를 가속도와 감속도 데이터로 변환하여 열차의 가속도의 견인력과 감속도의 제동력에 의해 발생되는 레일마모량을 비교 분석한 결과로 통해 궤도 관리에 적용할 수 있는 방안을 제시하고자 한다.

절연구간운행 고속철도차량 전력품질 특성 분석 (The analysis of power quality characteristics in high speed train through neutral section of catenary system)

  • 홍현표;최의성;이시빈;이희순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.634-643
    • /
    • 2011
  • The neutral section was installed in order to prevent conflict with different phase angle source in electric railway catenary system. The speed of electric train reduced due to coasting operation by notch off when it passed the neutral section. And, the catenary wire was damaged and the accident might be happened because of the arc generation when the electric train passed the neutral section with notch off condition. The inrush current of main transformer installed tiling train is analyzed during the operation of MCB(main circuit break) passing through the neutral section. The instantaneous waveform of load current were analyzed in case of powering and regenerative braking. Inrush current waveform with run of AC railway train showed that inrush current waveform and harmonics, the inrush current generated from main transformer in train has bad effects on power quality problem. In order to reduce these inrush currents, the MCB is connected when the phase angle of voltage is 90 degree. This paper is to measure inrush current and harmonics in main transformer of high speed train in neutral section of electric railway. This measurement report is used to control minimum inrush current in algorithm and power phase angle.

  • PDF

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.

한국형 틸팅열차 운행 중 운전 모드에 따른 고조파 분석 및 평가에 관한 연구 (A Study on Harmonic Analysis and Evaluation According to Operating Mode During Operation of the Tilting Train Express)

  • 강철;임재찬;허재선;김재철;이수길;한성호
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.416-421
    • /
    • 2009
  • Recently, the new Korean Tilting Train Express(TTX) which maintains a speed on the curve railway line is developed. Electric railways, including the TTX, have electrical problems that could bring about serious accidents. For such reasons, the electric railway's electrical problems, electrical harmonic and others, have been studied briskly. Thus, TTX's electrical problems also need leading studies because the new Korean TTX will operate earnestly in 2012. The results could be used hereafter diagnosis of it's components and train conditions. In the paper, electrical signals in TTX operation were measured to analyze electrical harmonic. In addition, after the electrical signals were measured to operating mode (coasting mode, acceleration mode and regenerative breaking mode) respectively in test section(Ho-nam line, Chung-buk line, Jung-ang line and Tae-baek line). The electrical harmonics considered operating modes triparted were analysed and evaluated.

전동열차의 주행에너지 소비를 절감하는 운전모드 해석 (Optimal Driving Mode Analysis for Reducing Energy Consumption in Electric Multiple Unit)

  • 김치태;김동환;박영일;한성호
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.174-183
    • /
    • 2005
  • A train driving requires to n the fixed distance within given time, and it is desirable to consume low energy if necessary. Reducing energy consumption depends on the train operation modes by either manual or automatic operation. In this article, an operation to reduce energy consumption by changing modes of train operation by a driver without changing the train operation requirement is investigated. The powering model, braking model and consumed energy calculation model are developed, then simulated by using a Matlab software. The accuracy of the train dynamic model established by the simulations is verified by comparing with the real experimental data. Several simulations by various operations in the real track are executed, then the desirable pattern of train driving is found.