• 제목/요약/키워드: Coastal erosion

검색결과 301건 처리시간 0.031초

Numerical Analysis of Beach Erosion Due to Severe Storms (폭풍에 의해 발생하는 해빈침식에 대한 수치해석)

  • 조원철;표순보
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제12권1호
    • /
    • pp.19-26
    • /
    • 2000
  • A numerical model is applied for predicting two-dimensional beach and dune erosion during severe storms. The model uses equation of sediment continuity and dynamic equation, governing the on-offshore sediment transport due to a disequilibrium of wave energy dissipation. And the model also uses sediment transport rate parameter K from dimensional analysis instead of that recommended by Kriebel. During a storm, a beach profile evolves to a form where the depth at the surf zone is related to the distance seaward of the waterline. In general, the erosion in the beach profile is found to be sensitive to equilibrium profile parameter, sediment transport rate parameter, storm surge level and breaking wave height.

  • PDF

Effect of Infra-Gravity Waves on Nearshore Morphodynamics in the East Coast : Case Study - Ilsan Beach (장주기 중력외파의 동해안 연안지형변화에 미치는 영향 연구 : 사례연구 - 일산해변)

  • Son, Donghwi;Yoo, Jeseon;Shin, Hyunhwa
    • Ocean and Polar Research
    • /
    • 제40권2호
    • /
    • pp.87-98
    • /
    • 2018
  • It is widely known that infragravity waves can exert significant influence on wave run-up over beaches. Large run-ups can lead to overwash, flooding and severe coastal erosion. In spite of the importance of infragravity waves in relation to wave run-up and coastal erosion, few studies have been carried out with regard to the impact of infragravity waves on nearshore morphodynamics with respect to eastern beaches in Korea. The purpose of this study is to investigate the importance of infragravity waves in nearshore numerical modelling. For the study, XBeach model was set up to analyze morphodynamics in December 2016, in Ilsan beach which is located in Ilsan-dong, Ulsan Metropolitan City. After validation of the XBeach model, numerical experiments were conducted by using various directional spreading coefficients. As the directional spreading coefficients are increased, the effect of infragravity waves is also enhanced by narrowband frequency. With the increasing effect of infragravity waves, the amount of sediment transport is also increased and an erosion dominant pattern is found in the south part of Ilsan beach and a deposition pattern in the north part of the beach mainly due to the wave incident direction of NNE.

Shoreline Change Before and After Breakwater Extension at the Gungchon Port, Geundeok-myeon, Samcheok-si, Gangwon-do (강원도 삼척시 근덕면 궁촌항 방파제 확장 전, 후의 해안선 변화)

  • Kim, Young-Jae;Hwang, Sangill;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • 제26권2호
    • /
    • pp.29-38
    • /
    • 2019
  • This study tries to reveal influence of artificial structure construction on shoreline change using DSAS 4.3. Before breakwater extension at the Gungchon Port, beaches at the study area were dominated by long-term erosion and especially, severe shoreline retreat was prevailed at the Wonpyeong Beach that is opened to offshore. During 2 years after the extension leading formation of shadow zone, the Gungchon Beach was rapidly developed due to sand supply to the shadow zone and then stabilized. The shadow zone only affected the northern part of the Wonpyeong Beach, while beaches from the southern part of the Wonpyeong Beach to the Munam Beach was little affected. Beach nourishment and groin construction led beach development at the northern part of the Wonpyeong Beach, while beach erosion from the southern part of the Wonypeong Beach to the Munam Beach was caused by the groin. This study suggests that sufficient consideration before coastal structure construction should be made regardless of purposes.

An Experimental Study on the Beach Nourshment Method of HAE UN DAE Beach (해운대 해수욕장에 있어서의 양빈공법에 관한 실험적 연구)

  • 민병형;옥치율;유상호
    • Journal of Ocean Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.84-93
    • /
    • 1987
  • A beach nourishment method can be used as one of the beach erosion protection methods which may keep coastal environments whithout constructing coastal structures on the HAE UN DAE beach. The beach nourishmens is affected by a natural condition and artificial condition;a natural condition includes conditions of bottom slope, diameter of bottom materials and waves, and artificial conditions include deposit position, method, diameter and quantity of the nourishing sand. It has accomplished to obtain the deposit position and the best diameter of the nourishing sand from a two-dimensional hydraulic model test, which simulates the erosional HAE UN DAE beach. In this study, the protection of the beach erosion can be maximized when the nourishing sand of 3.3mm in diameter, which is about 5.5.times of the bottom materials in diameter, is deposited layerly in front of the breaker zone which has a water depth of 4.6m.

  • PDF

The Prediction of Coastal Topographic Deformation Using Change Detection Technique (경년변화추출기법을 이용한 해안지형변화 예측)

  • 최철웅;곽재하;박상길;강인준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제13권2호
    • /
    • pp.169-176
    • /
    • 1995
  • Change detection is the technique to represent the change of pixel by pixel and band by band between $t_1\;and\;t_2$ times. In this study, authors analize the beach-sand movement using digital image analysis, interpolation and digital terrain model by leveling every years at a coastal area. This paper suggests the useful beach-maintainance plan based on the sand movement and its direction, direction and influence of ocean current, change of oceansand erosion and sedimentation, and area of erosion and sedimentation.

  • PDF

Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula

  • Yun, MyungHyun;Choi, ChulUong
    • Korean Journal of Remote Sensing
    • /
    • 제31권1호
    • /
    • pp.29-38
    • /
    • 2015
  • The coastline influenced naturally and artificially changes dynamically. While the long-term change is influenced by the rise in the surface of the sea and the changes in water level of the rivers, the short-term change is influenced by the tide, earthquake and storm. Also, man-made thoughtless development such as construction of embankment and reclaimed land not considering erosion and deformation of coast has been causes for breaking functions of coast and damages on natural environment. In order to manage coastal environment and resources effectively, In this study is intended to analyze and predict erosion in coastal environment and changes in sedimentation quantitatively by detecting changes in coastal line from data collection for satellite images and aerial LiDAR data. The coastal line in 2007 and 2012 was extracted by manufacturing Digital Surface Model (DSM) with Aviation LiDAR materials. For the coastal line in 2009 and 2010, Normalized Difference Vegetation Index (NDVI) method was used to extract the KOMPSAT-2 image selected after considering tide level and wave height. The change rate of the coastal line is varied in line with the forms of the observation target but most of topography shows a tendency of being eroded as time goes by. Compared to the relatively monotonous beach of Taean, the gravel and rock has very complex form. Therefore, there are more errors in extraction of coastlines and the combination of transect and shoreline, which affect overall changes. Thus, we think the correction of the anomalies caused by these properties is required in the future research.

해빈침식해역에서의 대책수립을 위한 수치해석

  • Kim, Hui-Jae;An, Hyo-Jae;Kim, Gang-Min;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 한국항해항만학회 2014년도 추계학술대회
    • /
    • pp.9-11
    • /
    • 2014
  • As Daecheon beach, which is the study area, has problem of erosion and loss of most beach under the extraordinary wave during the typhoon event, it is necessary to apply erosion control measures for short term impact. Therefore, we analyzed the status and reason of the erosion by field survey, collection of hydraulic model test, and numerical model experiment. For the erosion control measure, we adopted beach feeding and submerged reef method available at that site among various counter measures. Numerical analyses were made for both beach feeding only and beach feeding with submerged reefs and these were compared with the present status to find out the optimum design and to contribute for preparing a long term plan of beach loss protection.

  • PDF

Numerical Modeling of Cohesive Sediment Transport at Mokpo Coastal Zone (목포해역 점착성 퇴적물의 수송에 관한 수치모의)

  • Jung T.S.;Kim T.S.;Jeong D.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제9권1호
    • /
    • pp.36-44
    • /
    • 2006
  • Cohesive sediment transport in coastal region has been studied by numerical modeling. A finite element numerical model was setup to simulate hydrodynamics and sediment transport in the coastal region with complex topography. Only physical features of observed sediments has been used to determine erosion rates of bottom sediments together with the previous research results. The simulation results using the simply determined equation of erosion rates were compared with time variations of the observed SS concentration and showed good agreements. In conclusion, this method can be used to estimate transport of cohesive sediment conveniently.

  • PDF

Experimental Study for Beach Process by Construction of Offshore Structure (외해구조물 건설에 따른 해빈 변형에 관한 실험적 연구)

  • 이중우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제12권2호
    • /
    • pp.96-106
    • /
    • 2000
  • Though the recent years, large scale structures have been built on offshore for utilization of coastal ocean space as offshore airport and marine terminals. Sometimes, those big scale structures, however, happened to act as significant barriers against waves and severe beach erosion would take place on the coast. The present study deals nearshore topography changes affected by construction of an offshore structure with different distance from the shore. The series of three dimensional movable bed experiments have been examined in detail. Moreover, in order to make clear the relation of nearshore currents and local erosions behind offshore structure, the nearshore currents are calculated by Boussinesq equation model and compared with the same scale condition of the physical model experiments.

  • PDF

Advances in Shoreline Detection using Satellite Imagery (위성영상을 활용한 해안선 탐지 연구동향)

  • Tae-Soon Kang;Ho-Jun Yoo;Ye-Jin Hwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제29권6호
    • /
    • pp.598-608
    • /
    • 2023
  • To comprehensively grasp the dynamic changes in the coastal terrain and coastal erosion, it is imperative to incorporate temporal and spatial continuity through frequent and continuous monitoring. Recently, there has been a proliferation of research in coastal monitoring using remote sensing, accompanied by advancements in image monitoring and analysis technologies. Remote sensing, typically involves collection of images from aircraft or satellites from a distance, and offers distinct advantages in swiftly and accurately analyzing coastal terrain changes, leading to an escalating trend in its utilization. Remote satellite image-based coastal line detection involves defining measurable coastal lines from satellite images and extracting coastal lines by applying coastal line detection technology. Drawing from the various data sources surveyed in existing literature, this study has comprehensively analyzed encompassing the definition of coastal lines based on satellite images, current status of remote satellite imagery, existing research trends, and evolving landscape of technology for satellite image-based coastal line detection. Based on the results, research directions, on latest trends, practical techniques for ideal coastal line extraction, and enhanced integration with advanced digital monitoring were proposed. To effectively capture the changing trends and erosion levels across the entire Korean Peninsula in future, it is vital to move beyond localized monitoring and establish an active monitoring framework using digital monitoring, such as broad-scale satellite imagery. In light of these results, it is anticipated that the coastal line detection field will expedite the progression of ongoing research practices and analytical technologies.