• Title/Summary/Keyword: Coastal disasters

Search Result 119, Processing Time 0.025 seconds

Development of Storm Sewer Numerical Model for Simulation of Coastal Urban Inundation due to Storm Surge and Rainfall (폭풍해일과 강우에 의한 해안 도시 범람 수치모의를 위한 우수관망 수치모형의 개발)

  • Yoon, Sung Bum;Lee, Jaehwang;Kim, Gun Hyeong;Song, Ji Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.292-299
    • /
    • 2014
  • Since most of the researches on the coastal inundation due to typhoons have considered only storm surges, an additional inundation due to rainfall has been neglected. In general, typhoons are natural disasters being accompanied by the rainfall. Thus, it is essential to consider the effect of rainfall in the numerical simulation of coastal inundation due to storm surges. Because the rainwater is discharged to the sea through the storm sewer system, it should be included in the numerical simulation of storm surges to obtain reasonable results. In this study an algorithm that can deal with the effects of rainfall and sewer system is developed and combined with a conventional storm surge numerical model. To test the present numerical model various numerical simulations are conducted using the simplified topography for the cases including the inundation due to rainfall, the drainage of rainwater, the backflow of sea water, and the increase of sea water level due to drainage of rainwater. As a result, it is confirmed that the basic performance of the present model is satisfactory for various flow situations.

Sonar System Application for detection of underwater work space boundary using seabed type underwater equipments (착저형 수중장비를 이용한 수중작업 시 작업경계면 인식을 위한 소나시스템 활용법)

  • Shin, Changjoo;Jang, In-Sung;Won, Deokhee;Seo, Jung-min;Baek, Won-Dae;Kim, Kihun;KIM, JONG HOON
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.678-684
    • /
    • 2016
  • The detection of an underwater work space boundary is very important when an underwater construction is carried out using seabed type underwater equipment, such as underwater machines for rubble mound leveling, because it can induce industrial disasters. Therefore, divers are needed to mark the underwater work space boundary. A nylon rope is used to improve the convenience during an underwater diver's work. The results showed that the work space boundary can be detected using a sonar system. Using these results, an efficient method to detect the underwater work space boundary can be obtained when an underwater construction is carried out using seabed type underwater equipment.

Proposal for Wind Wave Damage Cost Estimation at the Southern Coastal Zone based on Disaster Statistics (재해통계기반 남해연안지역 풍랑피해액예측함수 제안)

  • Choo, Tai-Ho;Yun, Gwan-Seon;Kwon, Yong-Been;Park, Sang-Jin;Kim, Seong-Ryul
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2017
  • The natural disasters such as typhoon, earthquake, flood, heavy rain, drought, sweltering heat, wind wave, tsunami and so on, are difficult to estimate the scale of damage and spot. Also, these disasters were being damaged to human life. However, if based on the disaster statistics the past damage cases are analyzed and the estimated damages can be calculated, the initial damage action can be taken immediately and based on the estimated damage scale the damage can be mitigated. In the present study, therefore, we proposed the functions of wind wave damage estimation for the southern coast. The functions are developed based on Disaster Report('91~'14) for wind wave and typhoon disaster statistics, regional characteristics and observed sea weather.

Status of Local Disaster Prevention by Regional Types - Focusing on Gangwon-do - (지역유형별 지역방재력에 관한 실태분석 - 강원도를 중심으로 -)

  • Kim, Kyoung-Nam;Kwon, Gun-Ju;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.33-46
    • /
    • 2010
  • The 14 cities and guns within Gangwon-do were divided into three regions (urban-rural-integrated type, urban type, and ruralcoastal type), and local voluntary disaster prevention organizations in those regions were surveyed as sample groups. As a result, the urban-rural-integrated type and the urban type were found to be lower than the rural-coastal type in all domains including recognition of disaster crisis, evacuation guidance, preparation of voluntary evacuation, maintenance of disaster prevention system, surveillance & guard, and information delivery. In particular, three types had higher information delivery but considerably lower preparation of voluntary evacuation. As for information delivery, foundations for rapid delivery of disaster information due to establishment and extension of systems for forecasting and warning of local governments were prepared, but as for preparation of voluntary evacuation, it is needed not only to perform consistent training and promotion for preparation for disasters for residents to accurately understand status of disasters but to take measures to secure safe places for evacuation beforehand.

Predicting the Design Rainfall for Target Years and Flood Safety Changes by City Type using Non-Stationary Frequency Analysis and Climate Change Scenario (기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망)

  • Jeung, Se-Jin;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.871-883
    • /
    • 2020
  • Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.

Analysis of the Tsunami Inundation Trace and it's Expectation Area in Coast Using GIS (GIS를 이용한 지진해일시 연안의 침수 흔적 및 예상 지역 분석)

  • Lee Hyung-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.175-182
    • /
    • 2006
  • The efficient management for minimum losses and demage precautions of fragile region against coastal disasters such as seismic waves and seawater overflows is proceeding continually. This study is to analyze inundation trace and extract expected damage areas with historic records of tsunami using Geographic Information System. Creating a digital elevation model of the Mangsang and the Nobong region in the east coast, we marked inundation record of tsunami and forecasted the flood area with a seismic wave height between 3 m and 5 m. The inundation trace layers and the expected damage areas on the cadastral map layer were superimposed individually. Consequently, the range and lot numbers of inundation expected area were calculated and inundation areas of 5 m tsunami were increased by 2.8 times than 3 m tsunami in case of subject regions. Analyzed results are expected to use evacuation work in case of seismic waves and to predict the compensation of the damaged area. And this study is expected to use suitable countermeasure for prevention from natural disasters.

Enhancing of Red Tide Blooms Prediction using Ensemble Train (앙상블 학습을 이용한 적조 발생 예측의 성능향상)

  • Park, Sun;Jeong, Min-A;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.41-48
    • /
    • 2012
  • Red tide is a natural phenomenon temporary blooming harmful algal with changing sea color from normal to red, which fish and shellfish die en masse. It also give a bad influence to coastal environment and sea ecosystem. The damage of sea farming by a red tide has been occurred each year which it cost much to prevent disasters of red tide blooms. Red tide damage and prevention cost of red tide disasters can be minimized by means of prediction of red tide blooms. In this paper, we proposed the red tide blooms prediction method using ensemble train. The proposed method use the bagging and boosting ensemble train methods for enhancing red tide prediction and forecast. The experimental results demonstrate that the proposed method achieves a better red tide prediction performance than other single classifiers.

Building GIS Application Model in Support of Tsunami Relief Effort (쓰나미 재난 대응을 위한 GIS 응용모델 구축에 관한 연구)

  • Liyanage, Asha Nilani;Lee, Heewon;Lee, Seok-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1489-1494
    • /
    • 2013
  • Tsunami happens rarely enough to allow a false sense of security, but when they do occur, there may be just minutes or hours for people to reach a safe location. Natural disasters like tsunami are inevitable and it is almost impossible to fully recoup damages caused by the disasters. However, it is possible to minimize the potential risk by developing early warning strategies. GIS modelling with its geoprocessing and analysis capability can play a crucial role in efficient mitigation and management of disaster. This study aims at developing integrated spatial information system processing model supporting tsunami evacuation action planning using geo-information technology such as GIS. The integration process classified into four phases. And in each phase, required input data and GIS processes are decided. The main effort in minimizing casualties in tsunami disaster is to evacuate people from the hazard area before tsunami strikes by means of either horizontal or vertical evacuation. The study provides essential spatial information for local decision making related with people's evacuation in tsunami-prone areas based on a modeling approach transferable to other coastal areas.

A Study on the Hazard and Risk Analysis of Hospital in Korea - Focused on Local Medical Centers (의료기관의 위험도 분석 조사 - 지역공공의료원을 중심으로)

  • Kim, Youngaee;Song, Sanghoon;Lee, Hyunjin;Kim, Taeyun
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.31-39
    • /
    • 2022
  • The purpose of this study is to analyse the hazard risk by examining the magnitude and severity of each type of hazard in order to mitigate and prepare for disasters in medical facilities. Methods: The hazard risk analysis for hazard types was surveyed for team leaders of medical facilities. The questionnaire analyzed data from 27 facilities, which were returned from 41 Local Medical Centers. Results: When looking at the 'Risk' by category type of hazard, the influence of health safety and fire/energy safety comes first, followed by natural disaster, facility safety, and crime safety. On the other hand, as for 'Magnitude', facility safety and crime safety come first, followed by health safety, fire/energy safety, and natural disasters. Most of the top types of disaster judged to have high hazard in medical facilities are health types. The top five priorities of hazard in medical facilities, they are affected by the geographical and industrial conditions of the treatment area. In the case of cities, the hazard was found to be high in the order of infectious disease, patient surge, and wind and flood damage. On the other hand, in rural areas, livestock diseases and infectious diseases showed the highest hazard. In the case of forest areas, the hazard was high in the order of wildfire, fire accident, lightning, tide, earthquake, and landslide, whereas in coastal areas of industrial complexes, the hazard was high due to fire, landslide, water pollution, marine pollution, and chemical spill accident. Implications: Through the research, standards will be established for the design of hospitals with disaster preparedness, and will contribute to the preparation of preemptive measures in terms of maintenance.

A analysis of occupational accidents in the Korea trap fishing vessel (통발어선의 작업안전 재해 분석)

  • RYU, Kyung-Jin;YU, Gwang-Min;KIM, Hyung-Seok;KIM, Sunghun;LEE, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.185-192
    • /
    • 2022
  • Fisheries is known as a high-risk industry in Korea, and various efforts have been made to reduce occupational accidents. Trap fisheries represent crustacean production, accounting for 4.7% of total fisheries production and 10.7% of its production value, which is classified as a relatively high-risk industry. With the disaster insurance payment data of the National Federation of Fisheries Cooperatives (NFFC) from 2016 to 2020, the accident rate of the entire fishery, the accident rate of trap fisheries, and the type of disasters in the past five years were analyzed. As a result, the average fishery accident rate for the past five years was 5.31%, but it was high at 6.15% for coastal trap fisheries and 5.59% for offshore trap fisheries. Slips and trips, struck by objects and contact with machinery were the most common types of the accident according to the characteristics of the work, and hand injuries were analyzed the most. Additional efforts, including education for accident prevention, development of personal protective equipment and improvement of the working environment, are needed to prevent accidents caused by repeated types of disasters.