• Title/Summary/Keyword: Coastal disaster

Search Result 354, Processing Time 0.025 seconds

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

Agroclimatic Zone and Characters of the Area Subject to Climatic Disaster in Korea (농업 기후 지대 구분과 기상 재해 특성)

  • 최돈향;윤성호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.13-33
    • /
    • 1989
  • Agroclimate should be analyzed and evaluated accurately to make better use of available chimatic resources for the establishment of optimum cropping systems. Introducing of appropriate cultivars and their cultivation techniques into classified agroclimatic zone could contribute to the stability and costs of crop production. To classify the agroclimatic zones, such climatic factors as temperature, precipitation, sunshine, humidity and wind were considered as major influencing factors on the crop growth and yield. For the classification of rice agroclimatic zones, precipitation and drought index during transplanting time, the first occurrence of effective growth temperature (above 15$^{\circ}C$) and its duration, the probability of low temperature occurrence, variation in temperature and sunshine hours, and climatic productivity index were used in the analysis. The agroclimatic zones for rice crop were classified into 19 zones as follows; (1) Taebaek Alpine Zone, (2) Taebaek Semi-Alpine Zone, (3) Sobaek Mountainous Zone, (4) Noryeong Sobaek Mountainous Zone, (5) Yeongnam Inland Mountainous Zone, (6) Northern Central Inland Zone, (7) Central Inland Zone, (8) Western Soebaek Inland Zone, (9) Noryeong Eastern and Western Inland Zone, (10) Honam Inland Zone, (ll) Yeongnam Basin Zone, (12) Yeongnam Inland Zone, (13) Western Central Plain Zone, (14) Southern Charyeong Plain Zone, (15) South Western Coastal Zone, (16) Southern Coastal Zone, (17) Northern Eastern Coastal Zone, (18) Central Eastern Coastal Zone, and (19) South Eastern Coastal Zone. The classification of agroclimatic zones for cropping systems was based on the rice agroclimatic zones considering zonal climatic factors for both summer and winter crops and traditional cropping systems. The agroclimatic zones were identified for cropping systems as follows: (I) Alpine Zone, (II) Mountainous Zone, (III) Central Northern Inland Zone, (IV) Central Northern West Coastal Zone, (V) Cental Southern West Coastal Zone, (VI) Gyeongbuk Inland Zone, (VII) Southern Inland Zone, (VIII) Southern Coastal Zone, and (IX) Eastern Coastal Zone. The agroclimatic zonal characteristics of climatic disasters under rice cultivation were identified: as frequent drought zones of (11) Yeongnam Basin Zone, (17) North Eastern Coastal Zone with the frequency of low temperature occurrence below 13$^{\circ}C$ at root setting stage above 9.1%, and (2) Taebaek Semi-Alpine Zone with cold injury during reproductive stages, as the thphoon and intensive precipitation zones of (10) Hanam Inland Zone, (15) Southern West Coastal Zone, (16) Southern Coastal Zone with more than 4 times of damage in a year and with typhoon path and heavy precipitation intensity concerned. Especially the three east coastal zones, (17), (18), and (19), were subjected to wind and flood damages 2 to 3 times a year as well as subjected to drought and cold temperature injury.

  • PDF

Meteorological Information for Red Tide : Technical Development of Red Tide Prediction in the Korean Coastal Areas by Meteorological Factors (적조기상정보 : 기상인자를 활용한 연안 적조예측기술 개발)

  • Yoon Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.105-108
    • /
    • 2006
  • Red tide(harmful algae) in the Korean Coastal Waters has a given a great damage to the fishery every you. However, the aim of our study understands the influence of meteorological factors (air and water temperature, precipitation, sunshine, solar radiation, winds) relating to the mechanism of red tide occurrence and monitors red tide by satellite remote sensing, and analyzes the potential area for red tide occurrence by GIS. The meteorological factors have directly influenced on red tide formation. Thus, We want to predict and apply to red tide formation from statistical analyses on the relationships between red tide formation and meteorological factors. In future, it should be realized the near real time monitoring for red tide by the development of remote sensing technique and the construction of integrated model by the red tide information management system (the data base of red tide - meteorological informations). Finally our purpose is support to the prediction information for the possible red tide occurrence by coastal meteorological information and contribute to reduce the red tide disaster by the prediction technique for red tide.

  • PDF

Evaluation of Optimal Performance of Hydraulic Barriers in Offshore Landfill using Seepage-Advection-Dispersion Analysis under Steady State Flow (정상류하 침투·이류 분산 해석을 이용한 폐기물 해상최종처리장 차수시스템의 최적 성능 평가)

  • Hwang, Woong-Ki;Oh, Myoung-Hak;Kim, Tae-Hyung;Kim, Hyang Eun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.61-68
    • /
    • 2018
  • This study was conducted to propose the optimum minimum requirement of cutoff system composed of the impermeable soil layer and vertical barrier in offshore landfill for prevention pollution leakage by seepage, advection, and dispersion numerical analyses under steady state. According to the study results, the minimum requirement of impermeable soil layer is below $1{\times}10^{-6}cm/s$ of hydraulic conductivity with more than 500 cm thickness or a system with equivalent cutoff effect. The minimum requirement of vertical barrier is below $1{\times}10^{-6}cm/s$ of hydraulic conductivity with more than 50 cm thickness or a system with equivalent cutoff effect. In addition, the vertical barrier should be embedded enough to seal securely with the impermeable soil layer for working cutoff effect.

Meteorological Information for Red Tide : Technical Development of Red Tide Prediction in the Korean Coastal Areas by eteorological Factors (적조기상정보 : 기상인자를 활용한 연안 적조예측기술 개발)

  • Yoon Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.844-853
    • /
    • 2005
  • Red tide(harmful algae) in the Korean Coastal Waters has a given a given damage to the fishery every year. However, the aim of our study understands the influence of meteorological factors (air and water temperature, precipitation sunshine, solar radiation, winds) relating to the mechanism of red tide occurrence and monitors red tide by satellite remote sensing, and analyzes the potential area for red tide occurrence by GIS. The meteorological factors have directly influenced on red tide formation. Thus, We want to predict and apply to red tide formation from statistical analyses on the relationships between red tide formation and meteorological factors. In future, it should be realized the near real time monitoring for red tide by the development of remote sensing technique and the construction of integrated model by the red tide information management system (the data base of red tide - meteorological informations. Finally our purpose is support to the prediction information for the possible red tide occurrence by coastal meteorological information and contribute to reduce the red tide disaster by the prediction technique for red tide.

Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos (해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-163
    • /
    • 2009
  • Incident wave angles are conventionally estimated by the directional spectrum analysis of wave data collected from in-situ sensors. The in-situ measurements are limited in monitoring incident wave angles in the wide surf zone, since the techniques are typically expensive, labor-intensive, and point-measuring. In this study, estimation of incident wave angles using wave crest features captured in digital video imagery is proposed to observe incident wave directions over the surf zone. Line signatures of wave crests having high image pixel intensities are extracted by moving an interrogation window to identify high intensity pixels in sequential video images. Wave angles are computed by taking the first derivative of the extracted crest signatures, i.e. local slope of the crest signatures in the two-dimensional physical plane. Compared to the wave angle estimates obtained by the directional spectrum analysis, video-based wave angle estimates show good agreements in general.

Development of Highly-Resolved, Coupled Modelling System for Predicting Initial Stage of Oil Spill (유출유의 초기 확산예측을 위한 고해상도 결합모형 개발)

  • Son, Sangyoung;Lee, Chilwoo;Yoon, Hyun-Doug;Jung, Tae Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.189-197
    • /
    • 2017
  • The development and application of accurate numerical models is essential to promptly respond to early stage of oil spill incidents occurring in nearshore area. In this study, the coupled modelling system was developed by integrating the advection-diffusion-transformation model for oil slick with the Boussinesq model, which incorporates non-linear, discrete, turbulent and rotational effects of wavy flows for accurate representation of nearshore hydrodynamics. The developed model examined its applicability through the application into real coastal region with topographical complexity and characteristics of the resulting flow originated from it. The highly-resolved, coupled model developed in this study is believed to assist in establishing the disaster prevention system that can prepare effectively for oil disasters under extreme ocean climate conditions and thus minimize industrial, economical, and environmental damages.

Improved Estimation for Expected Sliding Distance of Caisson Breakwaters by Employment of a Doubly-Truncated Normal Distribution (이중절단정규분포의 적용을 통한 케이슨 방파제 기대활동량 평가의 향상)

  • Kim Tae-Min;Hwang Kyu-Nam;Takayama Tomotsuka
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.221-231
    • /
    • 2005
  • The present study is deeply concerned with the reliability design method(Level III) for caisson breakwaters using expected sliding distance, and the objectives of this study are to propose the employment of a doubly-truncated normal distribution and to present the validity for it. In this study, therefore, the explanations are made for consideration of effects of uncertain factors, and a clear basis that the doubly-truncated normal distribution should be employed in the computation process of expected sliding distance by Monte-Carlo simulation is presented with introduction of the employment method. Even though only caisson breakwaters are treated in this paper, the employment of doubly-truncated normal distribution can be applied to various coastal structures as well as other engineering fields, and therefore it is expected that the present study will be extended in various fields.

Tidal Flat Simulation Characteristics of the Hydrodynamic Models (해수유동모형의 조간대 모의 특성)

  • Kang, Ju-Whan;Park, Seon-Jung;Kim, Yang-Seon;So, Jae-Kwi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.357-370
    • /
    • 2009
  • EFDC, ESCORT and MIKE21 models are applied at the Gomso Bay to investigate each models' facilities of tidal flat simulation. Comparisons with observation data show that all models simulate hydrodynamic phenomena and tidal flat well. CPU time and WCM are examined to evaluate the efficiency of the models, and the effects of flooding/drying depth and bottom friction are examined to analyze models' facilities of simulating tidal flat. The EFDC model is considered to be fairly good in accuracy, stability and applicability, it is, however, poor in efficiency and its complexity. While the ESCORT model is superior to the EFDC in simulation of tidal flat, it is inferior to the EFDC in CPU time and simulation of bottom friction. The MIKE21 model is excellent in efficiency, but some numerical noise would be detected at low water, not permitting correction of the model.

Report on the Present Condition and Operating of High Frequency Ocean Surface Radars in Korea (해수면 관측레이더의 국내 현황 및 운용에 관한 보고)

  • Song, Kyu-Min;Cho, Chol-Ho;Jung, Kyung-Tae;Lie, Heung-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.437-445
    • /
    • 2010
  • There is increasing interest, on the global basis, in the operation of ocean surface radars for measurement of coastal sea surface conditions to support environmental, oceanographic, meteorological, climatological, maritime and disaster mitigation operations. In south Korea, ocean surface radars are operating to monitoring oil spill, outflow from dike or preventing from safety-accidents in the 6 regions (16 radial sites) by main frequency about 13, 25 and 42 MHz until the present. However, that ocean surface radars have been operated on an experimental spectrum basis. In the results of 3~50 MHz band domestic analysis to improve the regulatory status of the spectrum used by oceanographic radars, it was demonstrated that sufficient frequency bands are available for oceanographic radars on the frequency band above 20 MHz. It is difficult to deploy and operate oceanographic radars in the sub-bands below 20 MHz except for 13 MHz band. For using HF ocean surface radars one should understand the spectrum environment in Korea and should prepare a suitable operating system and data processing techniques.