Tidal Flat Simulation Characteristics of the Hydrodynamic Models

해수유동모형의 조간대 모의 특성

  • Kang, Ju-Whan (Civil Engineering, Division of Construction Engineering, Mokpo National University) ;
  • Park, Seon-Jung (Civil Engineering, Division of Construction Engineering, Mokpo National University) ;
  • Kim, Yang-Seon (Civil Engineering, Division of Construction Engineering, Mokpo National University) ;
  • So, Jae-Kwi (Climate Change & Coastal Disaster Research Department, Korea Ocean Research and Development Institute)
  • 강주환 (목포대학교 건설공학부 토목공학) ;
  • 박선중 (목포대학교 건설공학부 토목공학) ;
  • 김양선 (목포대학교 건설공학부 토목공학) ;
  • 소재귀 (한국해양연구원 기후연안재해연구부)
  • Published : 2009.10.31

Abstract

EFDC, ESCORT and MIKE21 models are applied at the Gomso Bay to investigate each models' facilities of tidal flat simulation. Comparisons with observation data show that all models simulate hydrodynamic phenomena and tidal flat well. CPU time and WCM are examined to evaluate the efficiency of the models, and the effects of flooding/drying depth and bottom friction are examined to analyze models' facilities of simulating tidal flat. The EFDC model is considered to be fairly good in accuracy, stability and applicability, it is, however, poor in efficiency and its complexity. While the ESCORT model is superior to the EFDC in simulation of tidal flat, it is inferior to the EFDC in CPU time and simulation of bottom friction. The MIKE21 model is excellent in efficiency, but some numerical noise would be detected at low water, not permitting correction of the model.

EFDC, ESCORT, MIKE21 등 3가지 해수유동모형을 곰소만에 적용하여 각 모형의 조간대 모의 특성을 비교분석하였다. 검증결과 세 모형 모두 관측치와 부합하는 결과를 보이고 있는 등 해수유동 및 조간대를 무난하게 모의하고 있다. CPU 시간과 WCM 기능을 통해 계산 효율성을 검토하였고, 침수심/노출심 설정과 바닥마찰에 따른 결과를 분석하여 조간대 모의 특성을 파악하였다. 그 결과, EFDC 모형은 정확성과 안정성 및 적용성에서 모두 우수하게 나타나고 있으나, 효율성 측면과 모형수립이 다소 복잡하다는 단점을 보이고 있다. ESCORT 모형은 조간대 모의와 WCM에서는 EFDC에 비해 나은 결과를 보이는 반면 계산시간과 마찰특성에서는 열등한 결과를 보였다. MIKE21 모형은 계산시간에서 여타 모형에 비해 매우 빠른 반면, 저조시 수치진동이 유발되기도 하는데 상용모형이기에 모형의 개선이 허용되지 않는다는 단점이 있다.

Keywords

References

  1. 강주환, 김양선, 박선중, 소재귀(2009). ESCORT모형의 3차원 적용성 - 담수방류 모의. 한국해안해양공학회논문집, 21(3), 230-240
  2. 강주환, 문승록, 박선중(2004). 해수유동모형에서 조간대 모의의 필요성. 대한토목학회논문집, 24(3B), 259-265
  3. 강주환, 문승록, 박선중(2005). 조석확폭에 수반되는 조간대 영역 확대의 영향성. 한국해안해양공학회지, 17(1), 47-54
  4. 군산대학교 해양개발연구소(2007). 내죽도 연육(잠수)도로의 피해영향 조사 최종보고서
  5. 문승록, 박선중, 강주환, 윤종태(2006). MIKE21 모형을 이용한 목포해역 해일/범람 모의. 한국해안해양공학회지, 18(4), 348-359
  6. 박선중, 강주환, 문승록, 윤종태(2009). 이동경계기법을 이용한 해수유동모형의 범람 적용성. 한국해안해양공학회지, 21(2), 164-173
  7. 소재귀, 강주환, 박선중(2008). 해수유동모형 ESCORT - 개발 및 검증. 대한토목학회논문집, 28(3B), 335-343
  8. 이경선, 박경, 오정환(2000). 조간대 처리 기법을 포함한 3차원 Semi-Implicit 수역학 모델 개발. 한국해안해양공학회지, 한국해안해양공학회, 12(2), 70-80
  9. Balzano, A.(1998). Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coastal Engineering, 34, 83-107 https://doi.org/10.1016/S0378-3839(98)00015-5
  10. Bassoullet, P., Le Hir, P., Gouleau, D. and Roberts, S.(2000). Sediment transport over an intertidal mudflat: field investigations and estimation of fluxes within the "Baie de Marennes-Oleron"(France). Continental Shelf Research, 20, 1635-1653 https://doi.org/10.1016/S0278-4343(00)00041-8
  11. Bates, P.D.(2000). Development and testing of a subgrid-scale model for moving-boundary hydrodynamic problems in shallow water. Hydrological Processes, 14, 2073-2088 https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2073::AID-HYP55>3.0.CO;2-X
  12. Casulli, V. and Cheng, R.(1992). Semi-implicit finite difference methods for three-dimensional shallow water flow. International J. for Numerical Methods in Fluids, 15, 629-648 https://doi.org/10.1002/fld.1650150602
  13. DHI Water and Environment (2007). User guide and reference manual, Hydrodynamic Module
  14. Eisma, D.(1977). Intertidal deposits: River mouths, tidal flats and coastal lagoons. Marine Science Series, CRC Press, Boca Raton, 507p
  15. Flather, R.A. and Heaps, N.S.(1975). Tidal computations for Morecambe Bay. Geophysical J. Royal Astronomical Society, 42, 489-517 https://doi.org/10.1111/j.1365-246X.1975.tb05874.x
  16. Flather, R.A. and Hubbert, K.P.(1990). Tide and surge models for shallow water-Morecambe Bay revisited. Modeling Marine Systems, 1, A.M. Davies ed., CRC Press, 135-166
  17. Friedrichs, C.T. and Aubrey, D.G.(1996). Uniform bottom shear stress and equilibrium hypsometry of intertidal flat. in Mixing in Estuaries and Coastal Seas, C. Pattiaratchi ed., Coastal and Estuarine Studies, 50, American Geophysical Union, Washington DC, 405-429
  18. Hamrick, J.M.(1992). A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects. The College of William and Mary, Virginia Institute of Marine Science. Special Report 317, 63p
  19. Hamrick, J.M.(1994). Application of the EFDC, environmental fluid dynamics computer code to SFWMD Water Conservation Area 2A. Report JMH-SFWMD-94-01, Williamsburg, VA, 126p
  20. Hubbert, G.D. and McInnes, K.L.(1999). A storm surge model for coastal planning and impact studies. J. of Coastal Research, 15(1), 168-185
  21. Ip, J.T.C., Lynch, D.R. and Friedrichs, C.T.(1998). Simulation of estuarine flooding and dewatering with application to Great Bay, New Hampshire. Estuarine, Coastal and Shelf Science, 47, 119-141 https://doi.org/10.1006/ecss.1998.0352
  22. Ji, Z.G., Morton, M.R. and Hamrick, J.M.(2001). Wetting and drying simulation of estuarine processes. Estuarine, Coastal and Shelf Science, 53, 683-700 https://doi.org/10.1006/ecss.2001.0818
  23. Leendertse, J.J.(1967). Aspects of a computational model for long water wave propagation. Memorandum RH-5299-PR, Rand Corporation, Santa Monica
  24. Leendertse, J.J. and Gritton, E.C.(1971). A water quality simulation model of well mixed estuaries and coastal seas: Vol.2, computational procedures. Rand Corp., Report R-708-NYC, New York, 53p
  25. Lynch, D.R. and Gray, W.G.(1980). Finite element simulation of flow deforming regions. J. of Computational Physics, 36, 135-153 https://doi.org/10.1016/0021-9991(80)90180-1
  26. Madsen, H. and Jacobsen, F.(2004). Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal. Coastal Engineering, 51, 277-296 https://doi.org/10.1016/j.coastaleng.2004.03.001
  27. McCowan, A.D., Rasmussen, E.B. and Berg, P.(2001). Improving the performance of a two-dimensional hydraulic model for floodplain applications. Conference on Hydraulics in Civil Engineering
  28. Peng, M., Xie, L. and Pietrafesa, L.J.(2004). A numerical study of storm surge and inundation in the Croatan-Albemarle-Pamlico estuary system. Estuarine, Coastal and Shelf Science, 59, 121-137 https://doi.org/10.1016/j.ecss.2003.07.010
  29. Pritchard, D., Hogg, A.J. and Roberts, W.(2002). Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents. Continental Shelf Research, 22, 1887-1895 https://doi.org/10.1016/S0278-4343(02)00044-4
  30. Smagorinsky, J.(1963). General Circulation Experiment with the Primitive Equations. Monthly Weather Review, 91(3), 99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  31. Stelling, G.S., Kernkamp, H.W.J. and Laguzzi, M.M.(1998). Delft flooding system(FLS): A powerful tool for inundation assessment based upon a positive flow simulation
  32. Xie, L., Pietrafesa, L.J. and Peng, M.(2004). Incorporation of a mass-conserving inundation scheme into a three dimensional storm surge model. J. of Coastal Research, 20, 1209-1223 https://doi.org/10.2112/03-0084R.1