• Title/Summary/Keyword: Coarse aggregate

Search Result 651, Processing Time 0.028 seconds

Aggregate Effects on γ-ray Shielding Characteristic and Compressive Strength of Concrete (콘크리트의 감마선 차폐특성 및 압축강도에 대한 골재의 영향)

  • Oh, Jeong-Hwan;Mun, Young-Bum;Lee, Jae-Hyung;Choi, Hyun-Kook;Choi, Sooseok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • We observed the ${\gamma}-ray$ shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of $0.371cm^{-1}$ from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a ${\gamma}-ray$ of $^{137}Cs$, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of $3,175kg{\cdot}m^{-3}$. Although the unit weight of the concrete with OSS and OSG was $3,052kg{\cdot}m^{-3}$, which was lower than the maximum unit weight condition by $123kg{\cdot}m^{-3}$, its attenuation coefficient was improved by $0.012cm^{-1}$. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced ${\gamma}-ray$ shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

Crack Example and Crack Control Method of Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트의 균열발생 사례 및 억제방안)

  • Choi, Pan-Gil;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.173-180
    • /
    • 2009
  • Very-early strength latex-modified concrete(below ; VES-LMC) was developed for possible early-opening-to-traffic after overlay of bridge deck concrete. The purpose of this study is to analyze the cause of map, transverse and longitudinal cracking in VES-LMC and to provide a control method for minimizing occurrence of cracking. The proposed prevention method against map and transverse cracking was verified by field data. VES cement was modified as the unit cement content was reduced from 390kg/$m^3$ to 360kg/$m^3$. The maximum size of coarse aggregate was increased from 13mm to 19mm. The wire mesh and steel fiber were adopted in concrete mixture. From the results, the proposed prevention method against map and transverse cracking was verified since structural cracking was not occurred until 3 years after overlay.

Evaluation of the Asph81t Mixture Performance with Waste Materials

  • Lee, Kwan-Ho;Lovell, C
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-34
    • /
    • 1996
  • The objective of this paper is to evaluate the asphalt mixture performance with pyrolyzed carbon black(CBP) and air -cooled iron blast furnace slag. Marshall mix design was performed to determine the optimum binder content, The optimum binder content ranged from 6.3 percent to 7.75 percent. Dynamic creep testing was carried out using mixtures at the optimum binder content. Based on the test results, the use of pyrolyzed carbon black and slag in the asphalt pavement showed a positive result, such as the increase of Marshall stability, the decrease of the strain rate and the decrease in the mix stiffness rate at high temperature(5$0^{\circ}C$) and 137.9 kPa confinement. Within the limits of this research. it was concluded that pyrolyzed carbon black as an additive and slag as a coarse aggregate could be used to produce an asphalt paving mixture that has good stability, stiffness, and rutting resistance.

  • PDF

Setting Time Evaluation of Concrete Using Electrical Resistivity Measurement (전기비저항 측정을 이용한 콘크리트 응결시점 평가)

  • Lee, Han Ju;Yim, Hong Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.361-369
    • /
    • 2017
  • Setting time of cement-based materials can represent a developing strength in early-age mixture, and it can be used a significant parameter of high-performance concrete having various mix-proportions. Generally, initial and final setting time of concrete is measured by penetration resistance method that used a wet-sieving mortar mixture, therefore, it hardly represents the setting time of sound concrete including coarse aggregate. Recently, several nondestructive methods, such as ultrasonic velocity and impendence measurement, are proposed to evaluate the setting time of fresh concrete. This study attempts to measure an electrical resistivity using four-electrode method for evaluation of setting time in early-age cement-based materials. For this purpose, total 10 mixtures are prepared as different mix-proportions including chemical admixture. Based on the experimental results, two electrical parameters, such as initial electrical resistivity and rising time, are proposed to reflect a microstructure development by hydration of cement-based materials. As a result, proposed parameter is also discussed with the measured setting time by penetration resistance method.

Seismic damage assessment of steel reinforced recycled concrete column-steel beam composite frame joints

  • Dong, Jing;Ma, Hui;Zhang, Nina;Liu, Yunhe;Mao, Zhaowei
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Low cyclic loading tests are conducted on the steel reinforced recycled concrete (SRRC) column-steel (S) beam composite frame joints. This research aims to evaluate the earthquake damage performance of composite frame joints by performing cyclic loading tests on eight specimens. The experimental failure process and failure modes, load-displacement hysteresis curves, characteristic loads and displacements, and ductility of the composite frame joints are presented and analyzed, which shows that the composite frame joints demonstrate good seismic performance. On the basis of this finding, seismic damage performance is examined by using the maximum displacement, energy absorbed in the hysteresis loops and Park-Ang model. However, the result of this analysis is inconsistent with the test failure process. Therefore, this paper proposes a modified Park-Ang seismic damage model that is based on maximum deformation and cumulative energy dissipation, and corrected by combination coefficient ${\alpha}$. Meanwhile, the effects of recycled coarse aggregate (RCA) replacement percentage and axial compression ratio on the seismic damage performance are analyzed comprehensively. Moreover, lateral displacement angle is used as the quantification index of the seismic performance level of joints. Considering the experimental study, the seismic performance level of composite frame joints is divided into five classes of normal use, temporary use, repair after use, life safety and collapse prevention. On this basis, the corresponding relationships among seismic damage degrees, seismic performance level and quantitative index are also established in this paper. The conclusions can provide a reference for the seismic performance design of composite frame joints.

Noise reduction of Asphalt Concrete Pavement : Techniques and their performance evaluation (아스팔트 저소음 포장의 개발 및 공용성 평가)

  • Ock, Chang-Kwon;Kim, Jin-Hwan;Lee, Jong-Sup
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • Porous pavements can provide road users with beneficial characteristics such as skid resistance and surface water drainage under rainy condition, and they cause less tire-road noise than conventional hot mix asphalt(HMA) pavements. However, voids of porous pavements are easily clogged by road debris at early stages, which leads to frequent maintenance works. Therefore, this study focused on the way of minimizing void clogging in porous pavements. During mixture design, the quantity of coarse aggregate has been increased to form many straight void conduits (SVCs) in porous HMAs. These SVCs were found to be effective resisting the void clogging problems. Four different porous HMAs(19mm, 13mm, 10mm, and 8mm) were developed and placed on highway roads. Their performances were validated with field tests during the past four years.

Similitude Law and Scale Factor for Blasting Demolition Test on RC Scale Models (철근콘크리트 축소모형의 발파해체실험을 위한 상사법칙 및 축소율)

  • Park, Hoon;Yoo, Ji-Wan;Lee, Hee-Gwang;Song, Jung-Un;Kim, Sung-Kon
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • When doing a blasting demolition on RC structures made of scale models, scale model members considering both a proper scale factor and mechanical characteristics of materials have to be similar to prototype RC members to analyze the collapse behavior of RC structures. In this study. a similitude law considering the density of prototype materials is calculated. Both mix of concrete and arrangement of reinforcement have been described referring to Concrete Standard Specification as well as Design Standard of Concrete Structure. The scale factor on scaled concrete models considering maximum size of coarse aggregate is about one-fifth of a cross section of prototype concrete members. A scale factor on staled steel bar models is about one-fifth of a nominal diameter of prototype steel bar. According to the mechanical test results of scale models, it can be concluded that the modified similitude law may be similar to compressive strength of prototype concrete and yield strength of prototype steel bar.

A Study on the Chloride Migration Properties of High Durable Marine Concrete Using the Expansion Production Admixture (팽창재를 혼입한 고내구성 해양콘크리트의 염화물 확산특성에 관한 연구)

  • Kim, Kyoung-Min;Ryu, Dong-Woo;Park, Sang-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.697-700
    • /
    • 2008
  • Recently, high strength, flowability, and durability of concrete were required according to increase of large scale and high rise structure. However, cracks occurred easily on the high performance concrete. In this reason, using expansion agent for reducing shrinkage cracks were increased, but it did not consider on durability of high performance concrete. Accordingly, this study1 investigated the resistance of shrinkage and damage form salt by mixing CSA expansion agent on the blast-furnace slag cement and mixed cement for the low heat of hydration by three components. The cases that 8% of expansion agent was mixed and the proportion was OPC were expanded till 43.7 times compared with control concrete. For the resistance to the damage of salt, it was improved when mixing ratio was incresed and the maximum size of coarse aggregate growed bigger. In this study, the resistance to the damage of salt of the cases that 8% of expansion agent was mixed was improved about 16% compared with control concrete.

  • PDF

Suggestion of Segregation Evaluation Method based on Evaluation Index for Segregation(EIS) (재료분리 평가정수(EIS)에 의한 재료분리 평가법의 제안)

  • Han, Cheon-Goo;Kim, Gi-Cheol;Park, Byung-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.923-926
    • /
    • 2008
  • Currently more high flow and high performance concrete is used for construction of buildings in the world. However, when high flow and high performance concrete put high performance water reducing agent in quantity to improve flow, it has a negative effect on concrete structures since segregation arises from it though flow will be improved. There are naked-eye observation, coarse aggregate washing test, L Flow test for permeation among reinforcing rods and measurement of viscosity to judge concrete segregation resistance. However, it is difficult to apply them to practical affairs since they are very complicated and troublesome. Therefore, the study analyzed EIS dividing slump flow value into slump value, how to valuate concrete segregation resistance more easily, on the basis of the existing reference materials to propose EIS. As the results, in the event of high flow concrete, it is desirable that EIS value is prescribed to be less than 2.5 at the time of managing segregation. Also, at the time of prescribing EIS with performance, it is judged that it is desirable to manage segregation as less than 2.2 (Grade 1), 2.2$\sim$2.4 (Grade 2) and more than 2.6 (Grade 3).

  • PDF

INVESTIGATION OF THE OPERATIONAL PRINCIPLE AND PARAMETRIC STUDY ON A DRY PASTE SEPARATOR EQUIPED WITH A ROTOR - I. THEORETICAL STUDY (로터 장착 건식 미분 분리기의 작동원리 규명 및 파라미터 연구 -I. 이론 해석)

  • Park, S.U.;Kang, Y.S.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.70-80
    • /
    • 2015
  • Construction waste is known to include a large part of coarse and fine aggregates, which can be recirculated in the industry. Separating those aggregates economically from the waste has been thus considered to be one of the most important issues in this field. In particular, paste mixed in the waste causes significant complain from the inhabitants living near the place where waste-processing equipments are built and operated. In this study, we investigate the operational principle of a newly developed paste separator by using theoretical (in this first part) and CFD (in the second part) analysis. The separator consists of a rotor which turned out to play a significant role in separating those pastes from the aggregates. Under suitable assumptions regarding the air flow velocity as well as the particle velocity, we show that particles can be stagnant at the outlet of the roto channel for a wide range of parameter values, which allow the particles to get enough time to settle down via the gravitation. We also demonstrate such phenomenon by using a simple numerical simulation.