• 제목/요약/키워드: Coal combustion Ash

Search Result 151, Processing Time 0.026 seconds

Phase Equlibrium Analysis of Slagging Propensity of Coal Ash in Combustion/Gasification Environments (상평형도를 이용한 연소/가스화 조건에서의 석탄회분의 슬래깅 성향해석)

  • 최병철;김형택
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.75-81
    • /
    • 1999
  • 석탄가스화 복합발전기술은 석탄과 산화제의 부분 연소 반응 및 가스화 반응을 통하여 가스 생성 후 불순물을 용이하게 분리할 수 있으므로 기존의 미분탄 발전 방식에 비해 대기 오염물질인 H$_2$S 및 NH$_3$ 등의 SOx, NOx 등의 발생량을 저감시킬 뿐만 아니라 발전 효율이 높아 $CO_2$ 발생량도 줄일 수 있는 장점이 있다.(중략)

  • PDF

Property of the Jurassic anthracite (Anthracite from the Seongju Area of the Chungnam Coalfield) (충남탄전(忠南炭田) 무연탄(無煙炭)의 특성(特性))

  • Park, Suk Whan;Park, Hong Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.129-139
    • /
    • 1989
  • The anthracite coalfields of Korea are confined to the areas where sedimentary rocks of Permian and Jurassic are preserved. The Chungnam coalfield lies in the sedimentary rocks of Jurassic which belongs to the Daedong Supergroup (the Nampo group). For the property analysis of each coal seam interbeded in Daedong Supergroup, Seongju area is chosen and twelve coalseams are taken. Many standard tests have been established for optical analysis (maceral analysis, coalification degree measurement), chemical analysis (proximate, ultimate analysis) and physical analysis (ignition temperature, ash fusion temperature, hardgrove grindability index and X-ray diffraction). The Jurassic anthracite mainly consist of vitrinite and macrinite and the range of the reflectance is $R_{max}$ 5.0-6.5 which means metaanthracite rank. By the chemical composition analysis, it shows low H/C and high O/C value compare with international average value. By the physical analysis, it has very high ignition temperature ($531-584^{\circ}C$) and ash fusion temperature ($1510-1700^{\circ}C$) and very low combustion velocity (0.2-1.9 mg/min). The very wide range of the hardgrove grindability index (46-132) means that the grindability controlled mainly by the structural conditions of coal bearing strata.

  • PDF

The Evaluation of Adiabatic Temperature rise in Concrete by Using Blended Cement Hydration Model (혼합시멘트 수화모델을 이용한 콘크리트의 단열온도상승 예측에 관한 연구)

  • Wang, Xiaoyong;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.31-32
    • /
    • 2011
  • Granulated slag from metal industries and fly ash from the combustion of coal are industrial by-products that have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, the hydration of concrete containing fly ash or slag is much more complex compared with that of Portland cement. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures is considered in order to develop a numerical model that simulates the hydration of concrete containing fly ash or slag. The heat evolution rates of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of the mineral admixtures. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

  • PDF

Effects of Soil-Amended Bottom Ash on Decomposition Rates of Organic Matter as Investigated by an Enforced-Aeration Respirometer (호기순환 호흡계를 이용한 토양처리 석탄바닥재의 유기물 분해에 미치는 영향)

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.253-259
    • /
    • 2012
  • Disposal of high amount of coal combustion by-products, such as fly ash and bottom ash, is of a great concern to the country, due to the huge treatment cost and land requirement. On the other hand, those coal-ash wastes are considered to have desirable characteristics that may improve physical, chemical, and biological properties of soils. Especially, compared with fly ash, bottom ash has a larger particle size, porous surface area, and usable amount of micronutrients. In the present study, we examined bottom as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in soils fertilized with organic matter (hairy vetch, green barely, and oil cake fertilizer). Through laboratory incubation, $CO_2$ released from the soil was quantitatively and periodically monitored with an enforced-aeration and high-temperature respirometer. We observed that amendment of bottom ash led to a marked reduction in $CO_2$ emission rate and cumulative amount of $CO_2$ released, which was generally proportional to the amount of bottom ash applied. We also found that the temporal patterns of $CO_2$ emission and C sequestration effects were partially dependent on the relative of proportion labile carbon and C/N ratio of the organic matter. Our results strongly suggest that amendment of bottom ash has potential benefits for fixing labile carbon as more stable soil organic matter, unless the bottom ash contains toxic levels of heavy metals or other contaminants.

Effect of curing condition on strength of geopolymer concrete

  • Patil, Amol A.;Chore, H.S.;Dodeb, P.A.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • Increasing emphasis on energy conservation and environmental protection has led to the investigation of the alternatives to customary building materials. Some of the significant goals behind understaking such investigations are to reduce the greenhouse gasemissions and minimize the energy required formaterial production.The usage of concrete around the world is second only to water. Ordinary Portland Cement (OPC) is conventionally used as the primary binder to produce concrete. The cement production is a significant industrial activity in terms of its volume and contribution to greenhouse gas emission. Globally, the production of cement contributes at least 5 to 7 % of $CO_2$. Another major problem of the environment is to dispose off the fly ash, a hazardous waste material, which is produced by thermal power plant by combustion of coal in power generation processes. The geopolymer concrete aims at utilizing the maximum amount of fly ash and reduce $CO_2$ emission in atmosphere by avoiding use of cement to making concrete. This paper reports an experimental work conducted to investigate the effect of curing conditions on the compressive strength of geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator.

Characteristics of particle mixing and detection of poor fluidization in a fluidized bed ash cooler (유동층 저회냉각기에서의 입자 혼합특성과 비유동 진단)

  • Kim, D.W.;Lee, J.M.;Kim, J.S.;Kim, J.J.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.231-237
    • /
    • 2005
  • Interruption of good fluidization in a fluidized bed ash cooler(FBAC) for discharging bed materials such as sand or coal ash particles from the CFB combustor is frequently happened because of agglomeration of the particles in the bed. This unstable operation may, in the worst case, result in an unscheduled boiler shut down. In this study, we examined the operation problems of the FBAC of Tonghae CFB boiler and studied and introduced the simple detection and solution techniques with analyzing the mixing property and the occurrence of defluidization in a simulated fluidized bed ash cooler system (0.5m-H x 0.5m-W x 1.0m-L). The bridge of the large particles at the bed surface could be observed, and this caused to form the defluidization area at the entrance of the FBAC. The defluidization was affected not only by airflow rates but also by the particles discharging rates as well as particle size distribution in the FBAC. The local defluidization could be detected by analysis of the accumulated standard deviation error at a given period of time. Also, the regulation of the overall or local airflow rate made clearing up the local defluidization possible.

  • PDF

An Experimental Study on the Strength Development of Using Fly-Ash 100% Mortar for Binder (결합재로서 플라이애쉬 100% 사용 모르타르의 강도발현에 관한 실험적 연구)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Ahn, Ki-Hong;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.721-724
    • /
    • 2008
  • Recently, by-products for example of fly-ash, blast-furnace slag and etc are generally using in concrete. However a mount of by-products are mostly dropped into the land and sea. Expecially it is necessary to manage against London Dumping Convention which is prohibited for throwing the by-product into the sea. The purpose of this study is for the active use of the fly ash, which is a by-product of the combustion pulverizes coal thermal power plants, to compensate for the lack of landfill and for conservation of energy, by using fly ash as the supplementary cementitious material, and to prove its possibility as the related products of the cements.

  • PDF

Studies on the clinker formed in thermal power plants (화력발전소에서 생성된 크링커에 대한 연구)

  • Park, Hyun-Joo;Nam, Chang-Hyun;Yun, Yeo-Chan;Lee, Tae-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.34-40
    • /
    • 2003
  • Analyses for concentration, surface phenomena, and crystal structure were performed to identify the causes of clinker formation in three type of pulverized coal fired boilers. Some clinkers had partially molten surface and more CaO and $Fe_2O_3$ as compared with fly ash, and the major crystalline phases identified in the clinker were mullite and quartz. Clinkers were formed in high temperature zone of the boiler according to the identification of mullite by XRD. Free $SiO_2$ in sand combined with K, Na and Ca in limestone served as a fluxing agent to form clinkers in a circulating bed boiler.

  • PDF

Development of transient-state simulation model for slag flow on the wall of an entrained coal gasifier (분류층 가스화기 벽면의 슬래그거동에 대한 비정상해석 모델 개발)

  • Kim, Mukyeong;Ye, Insoo;ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.197-200
    • /
    • 2015
  • Understanding the slag flow behavior is important in an entrained coal gasifier for its influence of ash discharge and wall heat transfer rate. This study presents a new model to predict the transient behavior of the liquid and solid slag layers. Unlike the previous steady-state model, the solid slag layer was included in solving the governing equations in order to identify the temporal and spatial transformation between the solid-liquid slag, rather than treating the solid region as a boundary condition of the liquid layer. The performance of the new model was evaluated for changes in the slag deposition rate (${\pm}10%$) and gas temperature (${\pm}50K$) in a simple cylindrical gasifier. The results show that the characteristic times to reach a new steady-state ranged between 80 s to 180s for the changes in the two parameters. Because the characteristic times of the gasifier temperature and slag deposition rate by changes in the coal type and/or operating conditions would be almost instantaneous, the time-scale for the slag thickness at the bottom of the gasifier to stabilize was much larger.

  • PDF

A Basic Study on the Development of Backfill Material with Fly Ash and Bottom Ash of Circulating Fluid Bed Combustion (순환유동층보일러의 Fly Ash, Bottom Ash를 활용한 채움재 개발에 관한 기초연구)

  • Cho, Yong-Kwang;Lee, Yong-Mu;Nam, Seong-Young;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • In this study, the Controlled Low Strength Material (CLSM) was investigated to utilize the bottom ash and fly ash generated in the Circulating Fluidized Bed Combustor (CFBC). It was confirmed that the CFBC fly ash (CFBC-F) and CFBC bottom ash (CFBC-B) had an irregular particle shape through SEM measurement. According to the results of the hazard analysis, it was also confirmed that they were environmentally safe. In the case of mixing with CFBC-F, the unit quantity was increased. Regarding the rate of change of length, shrinkage in the range of -0.05~0.50% occurred in the air dry curing condition and expansion in the range of 0.1~0.6% in the sealed curing condition. Compressive strength was increased in the sealed curing condition compared to the air dry curing condition because there was enough moisture for hydration reaction in the long term. Therefore, the results of this study are likely be used as basic research data of mine filler materials.