• Title/Summary/Keyword: CoV(Coefficient of Variation)

Search Result 21, Processing Time 0.033 seconds

ANALYSIS OF MIXING EFFICIENCY OF A TUBULAR HEAT-EXCHANGER REACTOR USING CFD (CFD를 이용한 관상 열교환기형 반응기의 mixing 효율 분석)

  • Lee Ji Hyun;Song Hyun-Seob;Han Sang Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.45-47
    • /
    • 2005
  • We have investigated the mixing behavior of a tubular heat exchanger reactor using CFD and compared its mixing performance with different type of reactors such as jet mixer and continuous stirred tank reactor (CSTR). The mixedness in each reactor was quantified introducing a statistical average value, the coefficient of variation (CoV), which is a normalized standard deviation of concentration of a component over the whole fluid domain. Through the analysis of the flow pattern and turbulent energy distribution, we suggested a simple but effective way to improve the mixing performance of the tubular heat-exchanger reactor, which include the addition of the internals and/or the increase of the recycle flow rate. It was found that the CoV value of the tubular reactor could be nearly equivalent to that of CSTR by applying those two alternatives suggested here.

  • PDF

Terbia Addition Effects on Accelerated aging Characteristics of (Pr, Co, Cr)-doped ZnO Varistors ((Pr, Co, Cr)-doped ZnO 바리스터의 가속열화특성에 테르비아 첨가효과)

  • Nahm, Choon-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.508-513
    • /
    • 2007
  • The electrical properties and stability of $ZnO-Pr_6O_{11}-CoO-Cr_2O_3-based$ varistors were investigated for different $Tb_4O_{11}$ amounts in the range of $0{\sim}1.0\;mol%$. As the $Tb_4O_{11}$ amount increased, the sintered density increased in the range of $99.1{\sim}101.1%$ of theoretical density and the average grain size decreased in the range of $7.7{\sim}4.8{\mu}m$. The varistor voltage increased in the range of $280.9{\sim}715.8V/mm$ and the nonlinear coefficient increased in the range of $26.4{\sim}44.4$ with the increased of $Tb_4O_{11}$ amount. The 0.25 mol% $Tb_4O_{11}$-doped varistors exhibited the high electrical stability, with -0.1% in variation rate of varistor voltage, -0.7% in variation rate of nonlinear coefficient, and +17.4% in variation rate of leakage current for specified dc accelerated aging stress of $0.95V_{1mA}/150^{\circ}C/24h$.

Varistor Properties and Aging Behavior of V/Mn/Co/ La/Dy Co-doped Zinc Oxide Ceramics Modified with Various Additives

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.284-289
    • /
    • 2014
  • The effects of additives (Nb, Bi and Cr) on the microstructure, varistor properties, and aging behavior of V/Mn/Co/ La/Dy co-doped zinc oxide ceramics were systematically investigated. An analysis of the microstructure showed that all of the ceramics that were modified with various additives were composed of zinc oxide grain as the main phase, and secondary phases such as $Zn_3(VO_4)_2$, $ZnV_2O_4$, and $DyVO_4$. The $Bi_2O_3$-modified samples exhibited the lowest density, the $Nb_2O_5$-modified sample exhibited the largest average grain size, and the $Cr_2O_3$-modified samples exhibited the highest breakdown field. All additives improved the non-ohmic coefficient (${\alpha}$) by either a small or a large margin, and in particular an $Nb_2O_5$ additive noticeably increased the non-ohmic coefficient to be as large as 36. The $Bi_2O_3$-modified samples exhibited the highest stability with variation rates for the breakdown field and for the non-ohmic coefficient (${\alpha}$) of -1.2% and -26.3%, respectively, after application of a DC accelerated aging stress of 0.85 EB/$85^{\circ}C$/24 h.

Effects of Low-Temperature Sintering on Varistor Properties and Stability of VMCDNB-Doped Zinc Oxide Ceramics

  • Nahm, Choon-W.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.84-90
    • /
    • 2019
  • The varistor properties and stability against dc-accelerated stress of $V_2O_5-Mn_3O_4-Co_3O_4-Dy_2O_3-Nb_2O_5-Bi_2O_3$ (VMCDNB)-doped zinc oxide ceramics sintered at $850-925^{\circ}C$ were investigated. Increasing the sintering temperature increased the average grain size from 4.6 to 8.7 mm and decreased the density of the sintered pellet density from 5.54 to $5.42g/cm^3$. The breakdown field decreased from 5919 to 1465 V/cm because of the increase in the average grain size. Zinc oxide ceramics sintered at $875^{\circ}C$ showed the highest nonlinear coefficient (43.6) and the highest potential barrier height (0.96 eV). Zinc oxide ceramics sintered at $850^{\circ}C$ showed the highest stability: the variation rate of the breakdown field was -2.0% and the variation rate of the nonlinear coefficient was -23.3%, after application of the specified stress (applied voltage/temperature/time).

Electrical and Dielectric Properties, and Accelerated Aging Characteristics of Lanthania Doped Zinc Oxide Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.189-195
    • /
    • 2006
  • The microstructure, electrical and dielectric properties, and stability against DC accelerated aging stress of the varistors, which are composed of quaternary system $ZnO-Pr_6O_{11}CoO-Cr_2O_3-based$ ceramics, were investigated for different $La_2O_3$ contents. The increase of $La_2O_3$ content led to more densified ceramics, whereas abruptly decreased the nonlinear properties by incorporating beyond 1.0mol%. The highest nonlinearity was obtained from 0.5mol% $La_2O_3$, with the nonlinear coefficient of 81.6 and the leakage current of $0.1{\mu}A$. The varistors doped with 0.5mol% $La_2O_3$ exhibited high stability, in which the variation rates of breakdown voltage, nonlinear coefficient, leakage current, dielectric constant, and dissipation factor were -1.1%, -3.7%, +100%, +1.4%, and +8.2%, respectively, for stressing state of $0.95V_{1mA}/150^{\circ}C/24h$.

ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ Based Ceramics Varistors with High Stability under d.c. stress (d.c. 스트레스에 높은 안정성을 갖는 ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$계 세라믹 바리스터)

  • Park, Choon-Hyun;Yoon, Han-Soo;Nahm, Choon-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1003-1007
    • /
    • 1999
  • This paper is reported for the stability of ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ based ceramic varistors with $Er_{2}O_{3}$ added in the addition range 0.0 to 2.0 mol%. The varistors sintered at $130^{\circ}C$ exhibited abrupt positive current creep phenomena, which accompany thermal run away within short times, even under weak d.c. stress. As a result, these varistors were completely degraded. On the contrary, the stability of varistors sintered at $1350^{\circ}C$ was far better than that of $1300^{\circ}C$. In particular, the varistor containing 0.5 mol% $Er_{2}O_{3}$ showed a excellent stability, which the variation rate of the varistor voltage, the nonlinear coefficient, and leakage current is below 1%, 2%, and 3.5%, respectively, even under more severe d.c. stress, such as ($0.8V_{1mA}/90^{\circ}C/12h$) + ($0.85V_{1mA}/115^{\circ}C/12h$) + ($0.9V_{1mA}/120^{\circ}C/12h$) + ($0.9V_{1mA}/150^{\circ}C/12h$). Consequently, it is estimated that the basic composition of ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ based varistor contain 0.5 mol% $Er_{2}O_{3}$ will be used to the fabrication of the varistors for high performance and stability in a forthcoming.

  • PDF

Defects and Electrical Properties of NiO and Co3O4-doped ZnO-Bi2O3-Sb2O3 Ceramics (NiO와 Co3O4를 첨가한 ZnO-Bi2O3-b2O3 세라믹스의 결함과 전기적 특성)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • In this study we aims to examine the effects of $Co_3O_4$ and NiO doping on the defects and electrical properties in ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5) varistors. It seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects in Co and Ni co-doped ZBS system, however only ${V_o}^{\cdot}$ appeared in Co- or Ni-doped ZBS. Even though the same defects it was different in capacitance (1.5~4.5 nF) and resistance ($0.3{\sim}9.5k{\Omega}$). The varistor characteristics were improved with Co and Co+Ni doping (non-linear coefficient, ${\alpha}$= 36 and 29, relatively) in ZBS. The various parameters ($N_d=1.43{\sim}2.33{\times}10^{17}cm^{-3}$, $N_t=1.40{\sim}2.28{\times}10^{12}cm^{-2}$, ${\Phi}b$=1.76~2.37 V, W= 98~118 nm) calculated from the C-V characteristics in our systems did not depend greatly on the type of dopant, which were in the range of a typical ZnO varistors. It should be derived a improved C-V equation carefully for more reliable parameters because the variation of the varistor capacitance as a function of the applied dc voltage is depend on the defect, frequency, and temperature.

Electrolyte Effect on the Particle Characteristics Prepared by Soap-Free Emulsion Polymerization

  • Han, Seung-Tak;Lee, Kang-Seok;Shim, Sang-Eun;Saikia, Prakash J.;Choe, Soon-Ja;Cheong, In-Woo
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.403-411
    • /
    • 2007
  • Monodisperse micron-sized polystyrene (PS) spheres were successfully obtained using a single stage soap-free emulsion method in aqueous media mixed with ethanol (co-solvent) containing NaCI as the electrolyte. The optimum conditions for preparing the monodisperse PS microspheres, using soap-free emulsion polymerization in a water/ethanol mixture with an electrolyte, were studied. The presence of the co-solvent and electrolyte controlled the particle dispersion stability during the polymerization. The microspheres formed using PS, with a weight-average diameter of $2.6{\mu}m$, coefficient of variation of 5.3% and zeta potential of -15.1 eV, were successfully obtained in the presence of 0.1 wt% NaCI, 10 wt% monomer, 0.1 wt% initiator and 95/5 (g/g) of a water/ethanol mixture reacted at $70^{\circ}C$ for 24 h.

Microstructure, Electrical Properties, and Stability of ZPCCE Based Varistors (ZPCCE계 바리스터의 미세구조와 전기적 성질 및 안정성)

  • 남춘우;윤한수;류정선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.735-744
    • /
    • 2000
  • The electrical procerties and stability of ZnO-Pr$_{6}$O$_{11}$-CoO-Cr$_2$O$_3$-Er$_2$O$_3$ (ZPCCE) based varistors were investigated in the Er$_2$O$_3$content range of 0.0 to 4.0 mol%. ZPCCE ceramics containing 2.0 mol% Er$_2$O$_3$ exhibited the highest density of 5.74 g/㎤ corresponding to 99.3% of theoretical density. The varistors with 0.5 mol% and 2.0 mol% Er$_2$O$_3$exhibited a relatively satisfying nonlinearity, which the nonlinear exponent is 40.50 and 47.15, respectively and the leakage current is 2.66 $mutextrm{A}$, respectively. Under more severe d.c. stress, such as (0.80 V$_{1mA}$/9$0^{\circ}C$/12h)+(0.85 V$_{1mA}$115$^{\circ}C$/12h)+(0.90 V$_{1mA}$12$0^{\circ}C$/12h)+(0.95 V$_{1mA}$1$25^{\circ}C$12h), they showed a very excellent stability, which the variation rate of the variator voltage is -0.89% and -0.15%, the variation rate of the nonlinear coefficient is -4.67% and -3.56%, and the variation rate of leakage current is -6.02% and -19.56%, respectively. It is surely bellived that ZnO-0.5 mol% Pr$_{6}$O$_{11}$-1.0 mol% CoO-0.5 mol% Cr$_2$O$_3$-x mol% Er$_2$O$_3$(x=0.5, 2.0) based varistors will be greatly contributed to develop the advanced Pr$_{6}$O$_{11}$-based ZnO varistors in future.uture. future.uture.

  • PDF

Experimental Study of the Quantitative Characteristics of Fluidic Thrust Vectoring Nozzle for UAV (UAV용 추력편향 노즐의 정량적 특성에 관한 실험적 연구)

  • Park, Sang-Hoon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.723-730
    • /
    • 2014
  • Experimental study for supersonic co-flowing fluidic thrust vectoring control utilizing the secondary flow is performed. The characteristics of the thrust vectoring of two dimensional supersonic flow (Mach 2.0) are studied by Schlieren flow visualization and highly-accurate multi-component force measurements using the load cells. It is observed that the thrust deflection angle initially decreases and increases again forming a V-shaped variation as the pressure of the secondary flow increases. Characteristics of the performance coefficients of the system are also studied, and the detailed operating conditions for higher performance of the technique are suggested.