DOI QR코드

DOI QR Code

Varistor Properties and Aging Behavior of V/Mn/Co/ La/Dy Co-doped Zinc Oxide Ceramics Modified with Various Additives

  • Nahm, Choon-Woo (Department of Electrical Engineering, Semiconductor Ceramics Laboratory, Dongeui University)
  • 투고 : 2014.06.09
  • 심사 : 2014.09.22
  • 발행 : 2014.10.25

초록

The effects of additives (Nb, Bi and Cr) on the microstructure, varistor properties, and aging behavior of V/Mn/Co/ La/Dy co-doped zinc oxide ceramics were systematically investigated. An analysis of the microstructure showed that all of the ceramics that were modified with various additives were composed of zinc oxide grain as the main phase, and secondary phases such as $Zn_3(VO_4)_2$, $ZnV_2O_4$, and $DyVO_4$. The $Bi_2O_3$-modified samples exhibited the lowest density, the $Nb_2O_5$-modified sample exhibited the largest average grain size, and the $Cr_2O_3$-modified samples exhibited the highest breakdown field. All additives improved the non-ohmic coefficient (${\alpha}$) by either a small or a large margin, and in particular an $Nb_2O_5$ additive noticeably increased the non-ohmic coefficient to be as large as 36. The $Bi_2O_3$-modified samples exhibited the highest stability with variation rates for the breakdown field and for the non-ohmic coefficient (${\alpha}$) of -1.2% and -26.3%, respectively, after application of a DC accelerated aging stress of 0.85 EB/$85^{\circ}C$/24 h.

키워드

참고문헌

  1. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
  2. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x].
  3. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1999.tb01793.x].
  4. C. W. Nahm, C. H. Park, and H. S. Yoon, J. Mater. Sci. Lett., 19, 725 (2000). [DOI: http://dx.doi.org/10.1023/A:1006739421559].
  5. C. W. Nahm, Mater. Lett., 59, 2097 (2005). [DOI: http://dx.doi.org/10.1016/j.matlet.2005.01.080].
  6. J. K. Tsai and T. B. Wu, J. Appl. Phys., 76, 4817 (1994). [DOI: http://dx.doi.org/10.1063/1.357254].
  7. J. K. Tsai and T. B. Wu, Mater. Lett., 26, 199 (1996). [DOI: http://dx.doi.org/10.1016/0167-577X(95)00217-0].
  8. H. H. Hng and L. Halim, Mater. Lett., 57, 1411 (2003). [DOI: http://dx.doi.org/10.1016/S0167-577X(02)00999-0].
  9. H. H. Hng and P. L. Chan, Ceram Int., 30, 1647 (2004). [DOI: http://dx.doi.org/10.1016/j.ceramint.2003.12.162].
  10. H. H. Hng and K. Y. Tse, Ceramics International, 34, 1153 (2008). [DOI: http://dx.doi.org/10.1016/j.ceramint.2007.02.004].
  11. H. H. Hng and P. L. Chan, Ceram Int., 35, 409 (2009). [DOI: http://dx.doi.org/10.1016/j.ceramint.2007.12.004].
  12. Z. Minga, S. Yu, and T. C. Sheng, J. Europ. Ceram. Soc., 31, 2331 (2011). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2011.05.040].
  13. C. W. Nahm, J. Am. Ceram. Soc., 94, 2269 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04626.x].
  14. C. W. Nahm, J. Am. Ceram. Soc., 94, 1305 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04420.x].
  15. C. W. Nahm, J. Am. Ceram. Soc., 94, 3227 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04812.x].
  16. C. W. Nahm, J. Phys. Chem. Solid., 73, 834 (2012). [DOI: http://dx.doi.org/10.1016/j.jpcs.2012.02.007].
  17. C. W. Nahm, J. Mater. Sci.: Mater. Electron., 24, 118 (2013). [DOI: http://dx.doi.org/10.1007/s10854-012-0942-z].
  18. C. W. Nahm, J. Mater. Sci.: Mater. Electron., 24, 4839 (2013). [DOI: http://dx.doi.org/10.1007/s10854-013-1485-7].
  19. C. W. Nahm, S. K. Lee, J. S. Heo, D. G. Lee, J. H. Park, and H. G. Cho, Trans. Elect. Electron. Mater., 14, 193 (2013). [DOI: http://dx.doi.org/10.4313/TEEM.2013.14.4.193].
  20. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55, 109 (1972). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1972.tb11224.x].
  21. J. Fan and R. Freer, J. Am. Ceram. Soc., 77, 2663 (1994). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1994.tb04659.x].
  22. T. K. Gupta and W. G. Carlson, J. Mater. Sci., 20, 3487 (1985). [DOI: http://dx.doi.org/10.1007/BF01113755].