• Title/Summary/Keyword: CoO doping

Search Result 266, Processing Time 0.027 seconds

Gas Sensing Characteristics of Sb-doped SnO2 Nanofibers

  • Choi, Joong-Ki;Hwang, In-Sung;Kim, Sun-Jung;Park, Joon-Shik;Park, Soon-Sup;Dong, Ki-Young;Ju, Byeong-Kwon;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Undoped and Sb-doped $SnO_2$ nanofibers were prepared by electrospinning and their responses to $H_2$, CO, $CH_4$, $C_3H_8$, and $C_2H_5OH$ were measured. In the undoped $SnO_2$ nanofibers, the gas response ($R_a/R_g$, $R_a$: resistance in air, $R_g$: resistance in gas) to 100 ppm $C_2H_5OH$ was very high(33.9), while that to the other gases ranged from 1.6 to 2.2. By doping with 2.65 wt% Sb, the response to 100 ppm $C_2H_5OH$ was decreased to 4.5, whereas the response to $H_2$ was increased to 3.0. This demonstrates the possibility of detecting a high $H_2$ concentration with minimum interference from $C_2H_5OH$ and the potential to control the gas selectivity by Sb doping.

The Doping and Plasma Effects on Gas Sensing Properties of α-Fe2O3 Thin Film

  • Choi, J.Y.;Jang, G.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.189-193
    • /
    • 2004
  • Pure and Sn or Pt doped $\alpha-Fe_2O_3$ thin films were prepared on $Al_2O_3$ substrates by RF-magnetron sputtering method and the sensitivities were compared. It was found that pure $\alpha-Fe_2O_3$ thin films did not exhibit much selectivity in CO and $i-C_4H_{10}$ gases while it showed the high sensitivity in proportion to the gas concentration of $C_2H_{5}OH$ gas. Pt-doped $\alpha-Fe_2O_3$ showed to be alike sensing properties as pure $\alpha-Fe_2O_3$ thin film in $C_2H_{5}OH$ gas. However, Sn-doped $\alpha-Fe_2O_3$ thin films exhibited the excellent sensitivity and selectivity in Hz gas. After microstructure modification by plasma etching on pure $\alpha-Fe_2O_3$ thin films, the gas sensing characteristics were dramatically changed.

Characterization of Cu-doped ZnO thin film and its application of SAW devices (Cu 도핑된 ZnO 박막의 물성 및 SAW 소자 응용)

  • LEE, Jin-Bock;LEE, Hye-Jung;SHIN, Wan-Chul;SEO, Soo-Hyung;PARK, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1488-1490
    • /
    • 2000
  • ZnO:Cu thin films are deposited by using an RF magnetron co-sputtering system with Cu chips attached on ZnO target. Structural and electrical properties are analyzed as a function of deposition conditions, such as Cu chip areas, $O_2/(Ar+O_2)$ ratios, and working pressures, The results show that a higher electrical resistivity above $10^{10}$ ${\Omega}cm$ along with an excellent c-axial growth can be easily achieved by Cu-doping. SAW filters based on the ZnO:Cu films are also fabricated to estimate the electric-mechanical coupling coefficient($K^{2}_{eff}$). Higher $K^{2}_{eff}$ and lower insertion losses are observed for ZnO:Cu films, compared with those for ZnO films.

  • PDF

Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.166-173
    • /
    • 2018
  • In order to investigate the effect of Mn on the dielectric and piezoelectric properties of PMN-PT [$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$], four different types of 71PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: (1) Undoped single crystals, (2) undoped polycrystalline ceramics, (3) Mn-doped single crystals, and (4) Mn-doped polycrystalline ceramics. In the case of single crystals, the addition of 0.5 mol% Mn to PMN-PT decreased the dielectric constant ($K_3{^T}$), piezoelectric charge constant ($d_{33}$), and dielectric loss (tan ${\delta}$) by about 50%, but increased the coercive electric field ($E_C$) by 50% and the electromechanical quality factor ($Q_m$) by 500%, respectively. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$) and thus specimens changed from piezoelectrically soft-type to piezoelectrically hard-type. This Mn effect was more significant in single crystals than in ceramics. These results demonstrate that Mn-doped 71PMN-29PT single crystals, because they are piezoelectrically hard and simultaneously have high piezoelectric and electromechanical properties, have great potential for application in fields of SONAR transducers, high intensity focused ultrasound (HIFU), and ultrasonic motors.

Rutile Ti1-xCoxO2-δ p-type Diluted Magnetic Semiconductor Thin Films

  • Seong, Nak-Jin;Yoon, Soon-Gil;Cho, Young-Hoon;Jung, Myung-Hwa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An attempting to produce a p-type diluted magnetic semiconductor (DMS) using $Ti_{1-x}Co_xO_{2-\delta}-based$ thin films was made by suitable control of the deposition parameters including deposition temperature, deposition pressure, and doping level using a pulsed laser deposition method. T$Ti_{0.97}Co_{0.03}O_{2-\delta}-based$ (TCO) films deposited at $500^{\circ}C$ at a pressure of $5\times10^{-6}$ Torr showed an anomalous Hall effect with p-type characteristics. On the other hand, films deposited at $700^{\circ}C$ at $5\times10^{-6}$ Torr showed n-type behaviors by a decreased solubility of cobalt. The charge carrier concentration in the p-type TCO films was approximately $7.9\times10^{22}/cm^3$ at 300 K and the anomalous Hall effect in the p-type TCO films was controlled by a side-jump scattering mechanism. The magnetoresistance (MR), measured at 5 K in p-type TCO films showed a positive behavior in an applied magnetic field and the MR ratio was approximately 3.5 %. The successful preparation of p-type DMS using the TCO films has the potential for use in magnetic tunneling junction devices.

Sintering and Electrical Properties According to Sb/Bi Ratio(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.675-681
    • /
    • 2012
  • We aimed to examine the co-doping effects of 1/6 mol% $Mn_3O_4$ and 1/4 mol% $Cr_2O_3$ (Mn:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ (also ${\beta}-Bi_2O_3$ at Sb/Bi ${\leq}$ 1.0) were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 system by Mn rather than Cr doping. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(MnCr), the varistor characteristics were improved dramatically (non-linear coefficient, ${\alpha}$ = 40~78), and seemed to form ${V_o}^{\cdot}$(0.33 eV) as a dominant defect. From impedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentatively assigned to ZnO/$Bi_2O_3$ (Mn,Cr)/ZnO (0.64~1.1 eV) and the other is assigned to the ZnO/ZnO (1.0~1.3 eV) homojunction.

The single crystal growth of various colored cubic zirconia for jewelry (다양한 색의 보석용 큐빅 지르코니아 단결정 성장)

  • Nam, Kyung-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.272-276
    • /
    • 2007
  • The various colored cubic zirconia single crystals for jewelry were grown by skull melting method of excellent productivity. The cubic zirconia is similar to the character of diamond, which has high refractive index, large dispersion and high hardness. It is possible that the development of new colored cubic zirconia by doping 3d-transition elements or 4f-rare earth elements. The colored cubic zirconia is representative of synthetic gemstone which was grown up by mixing one or over two materials among $Pr_6O_{11},\;TiO_2,\;MnO_2\;and\;Er_2O_3$ as coloring agent. Subsequent heat treatment improves the quality of color and uniformity. This study is aimed the color reappearance of cubic zirconia such as natural peridot, smoky-quartz and red-tourmaline.

Preparation and Characterization of Doped $Fe_2O_3$ and GaAs Photosemiconductive Electrodes for $CO_2$ Fixation

  • Kim, Il Kwang;Lee, Seong Jae;Kim, Min Su;Jeong, Seung Il;Park, Byung Sun;Kim, Youn Geun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.669-674
    • /
    • 1995
  • The preparation and characterization of photosemiconductive electrodes of GaAs and of $Fe_2O_3$ doped with MgO or CaO were investigated. The doped $Fe_2O_3$ photosemiconductive electrodes were prepared from thin films sintered at temperatures from 1,100 to $1,450^{\circ}C$, and rapidly quenched in distilled water. The surfaces of the electrodes containing both corundum structure of $Fe_2O_3$ and spinel structure of $Mg_xFe_{3-x}O_4$ or $Ca_xFe_{3-x}O_4$ were analyzed by X-ray diffraction and scanning electron microscopy. The cathodic and anodic photocurrents on these electrodes indicated a critical doping amount of 5-11 wt. %. The photocurrents were enhanced when GaAs electrodes were treated with methylene violet the anodic photo-currents were temporarial enhanced and changed to the cathodic ptotocurrents after the surface was dryed.

  • PDF

The Charge/Discharge for Metal Oxides Substitution and Doping of $Li_4Ti_5O_{12}$ ($Li_4Ti_5O_{12}$에서 금속 산화물 치환에 따른 충방전 효과)

  • Kang, Mi-Ra;Jee, Mi-Jung;Bae, Hyeon;Choi, Byung-Hyun;Kim, Sei-Ki;Lee, Mi-Jea
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.44-45
    • /
    • 2006
  • 초고용량 캐패시터(Supercapacitor)는 이차전지와 더불어 차세대 전지로 분류되는 신형에너지 장치로서 충 방전 속도가 다르고 순간 전력공급이 가능하며 충 방전 수명이 반영구적으로 길고 고출력을 내기 때문에 이차전지가 갖지 못하는 영역에서 동력에너지원으로 사용된다. 본 연구에서는 초고용랑 캐패시터의 전극소재인 탄소계 재료를 대신하여 비탄소계 전극소재인 $Li_4Ti_5O_{12}$의 고상법 제조를 위한 Li/Ti의 최적 조성과 혼합 방법으로 Li-Ti 계에 $Fe_2O_3$, NiO, $Nb_2O_5$, $Sb_2O_3$ 그리고 ZnO와 같은 금속산화물로 치환시켜 합성된 Li -Ti계 금속산화물의 특성 및 충 방전 효과에 미치는 영향을 관찰하고자 하였다.

  • PDF

The Piezoelectric Properties of (Na0.5K0.5)NbO3-K4CuNb8O23 Ceramics with Various K4CuNb8O23 Doping and Sintering Temperatures

  • Yoon, Jung-Rag;Lee, Chang-Bae;Lee, Kyung-Min;Lee, Heun-Young;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.126-129
    • /
    • 2010
  • (1-X) $(Na_{0.5}K_{0.5})NbO_3-X$ $K_4CuNb_8O_{23}$ (NKN-X KCN) ceramics were produced using the conventional solid state sintering method, and their sinterability and electric properties were investigated. The density, dielectric constant (${\varepsilon}_r$), piezoelectric constant $d_{33}$, electromechanical coupling factor $k_p$ and mechanical quality factor $Q_m$ value of the NKN ceramics depended upon the KCN content and the sintering temperature. In particular, the KCN addition to the NKN greatly improved the mechanical quality factor $Q_m$ value. The ceramic with X = 2.0 mol% sintered at $1,150^{\circ}C$ possesses the optimum properties (${\varepsilon}_r=241$, $d_{33}=78$, $k_p=0.34$ and $Q_m=1,121$). These results indicate that the ceramic is a promising candidate material for applications in lead free piezoelectric transformer and filter materials.