Browse > Article
http://dx.doi.org/10.5369/JSST.2011.20.2.1

Gas Sensing Characteristics of Sb-doped SnO2 Nanofibers  

Choi, Joong-Ki (Department of Materials Science and Engineering, Korea University)
Hwang, In-Sung (Department of Materials Science and Engineering, Korea University)
Kim, Sun-Jung (Department of Materials Science and Engineering, Korea University)
Park, Joon-Shik (Convergence Sensor and Device Research Center, Korea Electronics Technology Institute)
Park, Soon-Sup (Convergence Sensor and Device Research Center, Korea Electronics Technology Institute)
Dong, Ki-Young (Display and Nanosystem laboratory, college of engineering)
Ju, Byeong-Kwon (Display and Nanosystem laboratory, college of engineering)
Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
Publication Information
Abstract
Undoped and Sb-doped $SnO_2$ nanofibers were prepared by electrospinning and their responses to $H_2$, CO, $CH_4$, $C_3H_8$, and $C_2H_5OH$ were measured. In the undoped $SnO_2$ nanofibers, the gas response ($R_a/R_g$, $R_a$: resistance in air, $R_g$: resistance in gas) to 100 ppm $C_2H_5OH$ was very high(33.9), while that to the other gases ranged from 1.6 to 2.2. By doping with 2.65 wt% Sb, the response to 100 ppm $C_2H_5OH$ was decreased to 4.5, whereas the response to $H_2$ was increased to 3.0. This demonstrates the possibility of detecting a high $H_2$ concentration with minimum interference from $C_2H_5OH$ and the potential to control the gas selectivity by Sb doping.
Keywords
Gas Sensors; Electrospinning; Nanofibers; Sb-$SnO_2$; Selective Detection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, and W. Li, “Improved $H_2$ sensing properties of Co-doped $SnO_2$ nanofibers”, Sens. Actuators, B, in press, 2010.
2 A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim, and K. Y. Rajpure, “Structural and optoelectronic properties of antimony incorporated tin oxide thin films”, J. Alloys and Compd., vol. 505, pp. 416-422, 2010.   DOI   ScienceOn
3 V. Dusastre and D. E. Williams, “Sb(III) as a surface site for water adsorption on $Sb(Sb)O_2$, and its effect on catalytic activity and sensor behavior”, J. Phys. Chem. B, vol. 102, pp. 6732-6737, 1998.   DOI   ScienceOn
4 Q. Wan and T. H. Wang, “Single-crystalline Sbdoped $SnO_2$ nanowires: synthesis and gas sensor application”, Chem. Comm., pp. 3841-3843, 2005.
5 A. A. Zhukova, M. N. Rumyantseva, A. M. Abakumov, J. Arbiol, L. Calvo, and A. M. Gaskov, “Influence of antimony doping on structure and conductivity of tin oxide whiskers”, Thin Solid Films, vol. 518, pp. 1359-1362, 2009.   DOI   ScienceOn
6 J.-H. Moon, J.-A. Park, S.-J. Lee, T.-H. Zyung, and I.-D. Kim, “Pd-doped $TiO_2$ nanofiber networks for gas sensor applications”, Sens. Actuators, B, vol. 149, pp. 301-305, 2010.   DOI   ScienceOn
7 T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, and N. Yamazoe, “Relationshio between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides”, J. Mol. Catal. A: Chem., vol. 155, pp. 193-200, 2000.   DOI   ScienceOn
8 S.-J. Kim, P.-S. Cho, J.-H. Lee, C.-Y. Kang, J.-S. Kim, and S.-J. Yoon, “Preparation of multicompositional gas sensing films by combinatorial solution deposition”, Ceram. Int., vol. 34, pp. 827-831, 2008.   DOI   ScienceOn
9 T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, “Development of $SnO_2$-based ethanol gas sensor”, Sens. Actuators, B, vol. 9, pp. 63-69, 1992.   DOI   ScienceOn
10 A. Zima, A. Kock, and T. Maier, “In- and Sb-doped tin oxide nanocrystalline films for selective gas sensing”, Microelectron. Eng., vol. 87, pp. 1467-1470, 2010.   DOI   ScienceOn
11 D. H. Reneker and I.-S. Chun, “Nanometre diameter fibers of polymer, produced by electrospinning”, Nanotechnology, vol. 7, pp. 216-223, 1996.   DOI   ScienceOn
12 W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies”, Nanotechnology, vol. 17, pp. R89-R106, 2006.   DOI   ScienceOn
13 Y. Zhang, X. He, J. Li, Z. Miao and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun $SnO_2$ nanofibers”, Sens. Actuators, B, vol. 132, pp. 67-73, 2008.   DOI   ScienceOn
14 I.-D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo and H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun $TiO_2$ nanofibers”, Nano Lett., vol. 6, pp. 2009-2013, 2006.   DOI   ScienceOn
15 Z. Zhang, X. Li, C. Wang, L. Wei, Y. Liu, and C. Shao, "ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors", J. Phys. Chem. C, vol. 113, pp. 19397-19403, 2009.   DOI   ScienceOn
16 W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, “A highly sensitive and fast-responding sensor based on electrospun $In_{2}O_{3}$ nanofibers”, Sens. Actuators, B, vol. 142, pp. 61-65, 2009.   DOI   ScienceOn
17 G. Wang, Y. Ji, X. Huang, X. Yang, P. Gouma, and M. Dudley, “Fabrication and characterization of polycrystalline $WO_3$ nanofibers and their application for ammonia sensing”, J. Phys. Chem. B, vol. 110, pp. 23777-23782, 2006.   DOI   ScienceOn
18 D. Li, Y. Xia, “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning”, Nano Lett., vol. 4, pp. 933-938, 2004.   DOI   ScienceOn
19 N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors”, Catal. Surv. Asia, vol. 7, pp. 63-75, 2003.   DOI
20 D. Li and J. T. McCann, and Y. Xia, “Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces”, Small, vol. 1, pp. 83-86, 2005.
21 N. Yamazoe, “New approaches for improving semiconductor gas sensors”, Sens. Actuators, B, vol. 5, pp. 7-19, 1991.   DOI   ScienceOn
22 G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches”, Sens. Actuators, B, vol. 107, pp. 209-232, 2005.   DOI   ScienceOn
23 D. E. Williams and K. F. E. Pratt, “Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides”, Sens. Actuators, B, vol. 70, pp. 214-221, 2000.   DOI   ScienceOn
24 D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel”, Adv. Mater., vol. 16, pp. 1151-1170, 2004.   DOI   ScienceOn
25 A. Greiner and J. H. Wendorff, “Electrospinning : a fascinating method for the preparation of ultrathin fibers”, Angew. Chem. Int. Ed., vol. 46, pp. 5670-5703, 2007.   DOI   ScienceOn