• Title/Summary/Keyword: Co tolerance

Search Result 438, Processing Time 0.027 seconds

Improvement of K+ and Na+ Ion homeostasis and salt tolerance by Co-inoculation of arbuscular mycorrhizal fungi (AMF) and spore associated bacteria (SAB)

  • Selvakumar, Gopal;Kim, Kiyoon;Roy, C. Aritra;Jeon, Sunyong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.246-246
    • /
    • 2017
  • Salinity inhibits plant growth and restricts the efficiency of arbuscular mycorrhizal fungi. The selective uptake of nutrients from the soil and their effective transport to host roots make it essential for plant growth and development under salt stress. AMF spore associated bacteria shown to improve mycorrhizal efficiency under stress. Thus, this study aimed to understand the co-inoculation efficiency of AMF and SAB on maize growth and ion homeostasis under salt stress. Two AMF strains and one SAB were inoculated with maize either alone or in combination with one another. The results of our study showed that AMF and SAB co-inoculation significantly improved dry weight and nutrient uptake of maize under salt stress. Co-inoculation significantly reduced proline accumulation in shoots and Na+ accumulation in roots. Co-inoculation treatment also exhibited the high K+/Na+ ratios in roots at 25 mM NaCl. Mycorrhizal colonization showed positive influence for regulation of ZmAKT2, ZmSOS1 and ZmSKOR gene expressions, contributing to K+ and Na+ ion homeostasis. CLSM view showed that SAB were able move and localize into inter and intra cellular spaces of maize roots. In addition, CLSM view of AMF spores showed that gfp-tagged SAB also associated on the spore outer hyaline layer.

  • PDF

Effects of Deoxynivalenol Reduced Barley Flours on Breadmaking Properties (Deoxynivalenol을 감소시킨 보릿가루의 첨가가 제빵 특성에 미치는 영향)

  • Hwang, Young-Hee;Lee, Won-Jong;Kim, Young-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.222-231
    • /
    • 2006
  • Deoxynivalenol (DON)-contaminated barley was treated with 0.1 M $Na_2CO_3$ solution to reduce DON content. DON content of barley was reduced from 2.08 to 0.67 ppm. Bread was made with 10, 20, and 30% DON-reduced barley flour added to white wheat flour. Farinogram showed water absorption and arrival time increased, while stability and mechanical tolerance index decreased when DON-reduced barley flour was added to white wheat flour. Gelatinization temperature, temperature at maximum viscosity, and maximum viscosity increased in amylogram with increasing addition of DON-reduced barley flour. Loaf volume of bread decreased with increasing amount of DON-reduced barley flour, while loaf weight increased. Barley flour pH increased by treatment with$Na_2CO_3$, and pH reduction decreased fermentation rate of yeast. Volume and size of gluten matrix decreased and crumb hardened in bread made with DON-reduced barley flour. Acceptabilities for color and texture were low in bread made with DON-reduced barley flour. Addition of DON-reduced barley flour at 30% reduced overall acceptability, whereas no significant difference in overall acceptability was observed when DON-reduced barley flour was added at 10 and 20%.

Citric Acid Reduces Alkaline Stress-induced Chlorosis, Oxidative Stress, and Photosynthetic Disturbance by Regulating Growth Performance, Antioxidant Activity and ROS Scavenging in Alfalfa

  • Lee, Ki-Won;Lee, Sang-Hoon;Song, Yowook;Park, Hyung Soo;Woo, Jae Hoon;Choi, Bo Ram;Lim, Eun A;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.210-216
    • /
    • 2021
  • Pollution of agricultural soil by alkaline salts, such as Na2CO3, is a critical and long-lasting problem in cultivable land. The aim of the study was to examine the putative role of citric acid (CA) in alleviating Na2CO3-stress in alfalfa. In this study, Na2CO3 significantly induced leaf chlorosis, inhibited plant growth and photosynthesis related parameters, increased hydrogen peroxide (H2O2) and reduced major antioxidant enzymes (SOD, CAD, APX) in alfalfa. However, the presence of CA these negative effects of Na2CO3-stress largely recovered. Interestingly, expression of antioxidant and ion transporter genes (Fe-SOD, CAT, APX, DHAR and NHX1) involved in Reactive oxygen species (ROS) homeostasis and oxidative stress tolerance in alfalfa. These findings suggest that CA-mediated Na2CO3 stress alleviation is an ecofriendly approach that would be useful to local farmer for alfalfa and other forage crop cultivation in alkaline soils.

Seasonal Change in the CO2 Fixation Rate and Water-Use Efficiency of Broad-leaved Tree Species on Jeju Island (제주지역 주요 활엽수의 대기 중 CO2 흡수율과 수분이용효율의 계절적 변화)

  • Oh, Soonja;Kim, Hyoun-Chol;Kang, Hee-Suk;Shin, Chang-Hoon;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.29 no.2
    • /
    • pp.123-132
    • /
    • 2020
  • Seasonal changes in the CO2 fixation rate and water-use efficiency in the leaves of six evergreen and two deciduous broad-leaved tree species on Jeju Island, Korea, were measured using a portable photosynthesis analyzer, to identify which species are most efficient in taking up CO2 from the air. The CO2 fixation rate was high in the deciduous species in spring and summer and decreased in fall, whereas it was high in the evergreen species in summer and fall and decreased in winter. The rate remained high in the deciduous tree Prunus yedoensis from spring to fall (> 7.1 μmol CO2/m2/s) and in two evergreen trees, Castanopsis cuspidata var. sieboldii and Cinnamomum camphora, in summer and fall (7.0 9.9 μmol CO2/㎡/s). Therefore, these tree species fix atmospheric CO2 effectively. The water-use efficiency was higher in evergreen species than in deciduous species regardless of the season. Exceptionally, it was high in the deciduous species Zelkova serrata in spring and summer (> 100 μmol CO2/mol H2O), suggesting that Z. serrata is a useful tree for dry conditions due to its tolerance of water stress. The regressions of the CO2 fixation rate versus the evaporation rate and stomatal conductance were linear and non-linear, respectively. This suggests that the stomatal activity of leaves plays an important part in CO2 fixation of plants. In conclusion, C. cuspidata var. sieboldii, C. camphora, and P. yedoensis should be planted along roads or in urban spaces for the greening of cities and mitigation of CO2 concentrations in the air.

Isolation and Partial Characterization of Isoflavone Transforming Lactobacillus plantarum YS712 for Potential Probiotic Use (Isoflavone 비배당화 및 항산화 활성을 지닌 Lactobacillus plantarum YS712의 선발)

  • Cho, Yoon-Hee;Imm, Jee-Young;Kim, Hwa-Young;Hong, Seong-Gil;Hwang, Sung-Joo;Park, Dong-Jun;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.640-646
    • /
    • 2009
  • Lactic acid bacteria (LAB) are typical probiotic microbes that are used in various industries including fermented foods, feed additives, and pharmaceuticals. The purpose of this study was to compare the ability of isoflavone biotransformation and antioxidative activity of 17 LAB. Six strains including the Lactobacillus species exhibited a 100% hydrolysis rate for daidzein during fermentation. The content of total genistein in soymilk fermented with these strains was $872-943\;{\mu}g/g$. The DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging ability of the LAB was widely variable and ranged from 23-78%. A selected strain was isolated from kimchi and the strain was identified as Lactobacillus plantarum ssp. through the API carbohydrate fermentation pattern and 16S rDNA profile. The strain exhibited excellent acid tolerance in an artificial gastric solution. L. plantarum YS712 showed high $\beta$-glucosidase activity in fermentation. The concentration of genistein and daidzein in soymilk fermented with L. plantarum YS712 increased from 3.64 to $917.3\;{\mu}g/g$ and from 58.18 to $1062.17\;{\mu}g/g$, respectively. These results demonstrate the potential of L. plantarum YS712 as a probiotic culture that can be utilized in the manufacturing of fermentation foods and dietary supplements.

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.

Current Research Trends in Wood Preservative for Enhanced Durability : A Literature Review on Copper Based Preservatives (옥외 내구성 향상을 위한 목재보존제의 최근 연구 동향 - 구리 기반 약제를 중심으로 -)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.212-227
    • /
    • 2012
  • Current research trends in wood preservatives for enhancing durability was reviewed. Due to leaching of recent Copper-Based Preservatives commonly used as chemicals for pressure treatment; they have been a growing concern, especially in improving the fixation of the copper as alkyl ammonium quat. and azol in wood and preventing the leaching of active ingredients. With the appearance of emulsion type chemicals using micronized and nano-sized wood preservatives, researchs on characteristics of Copper-Based Preservatives regarding penetration and fixation in wood are debatable. Moreover, unlike the case of CCA, the recent alkyl ammonium quat. and azol bear a serious threat in the decrease of antimicrobial effectiveness against wood destroying fungi with copper tolerance. Therefore, development and research of co-biocide is needed.

Acceleration of Simulated Fault Injection Using a Checkpoint Forwarding Technique

  • Na, Jongwhoa;Lee, Dongwoo
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.605-613
    • /
    • 2017
  • Simulated fault injection (SFI) is widely used to assess the effectiveness of fault tolerance mechanisms in safety-critical embedded systems (SCESs) because of its advantages such as controllability and observability. However, the long test time of SFI due to the large number of test cases and the complex simulation models of modern SCESs has been identified as a limiting factor. We present a method that can accelerate an SFI tool using a checkpoint forwarding (CF) technique. To evaluate the performance of CF-based SFI (CF-SFI), we have developed a CF mechanism using Verilog fault-injection tools and two systems under test (SUT): a single-core-based co-simulation model and a triple modular redundant co-simulation model. Both systems use the Verilog simulation model of the OpenRISC 1200 processor and can execute the embedded benchmarks from MiBench. We investigate the effectiveness of the CF mechanism and evaluate the two SUTs by measuring the test time as well as the failure rates. Compared to the SFI with no CF mechanism, the proposed CF-SFI approach reduces the test time of the two SUTs by 29%-45%.

Improvement of Gap Bridging Ability in $CO_2$ Laser-GMA Hybrid Welding (조선용 강재의 $CO_2$레이저 GMA 하이브리드 용접에서 갭 브리징 능력 향상기술 개발)

  • Chae, Hyun-Byung;Kim, Cheol-Hee;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.49-56
    • /
    • 2006
  • For laser welding in shipbuilding industry, gap bridging capability is one of the most important characteristics to achieve the high productivity and good weld quality. Recently, laser-GMA hybrid welding process is regarded as a distinctive method to overcome the tight gap tolerance with improving the productivity. In this study, the influence of process parameters on the bead formation was experimentally analyzed and the relationship between the process parameters and geometric imperfections was investigated. It was revealed that undercut, excessive weld metal, excessive penetration and incompletely filled groove were the major geometric imperfections. The optimized wire feeding and arc pressure were necessary to ensure the gap bridging ability. The approach to select the process parameters was conducted for butt welding with up to 2mm joint gap, in which the sound weld beads were generated without changing the welding speed.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.