• Title/Summary/Keyword: Co ferrite

Search Result 365, Processing Time 0.032 seconds

Effect of Cobalt Substitution on the Magnetic Properties of NiZnCu Ferrite for Multilayer Chip Inductors (Cobalt 치환된 칩인덕터용 NiZnCu Ferrite의 자기적 특성 연구)

  • An, Sung-Yong;Kim, Ic-Seob;Son, Soo-Hwan;Song, So-Yeon;Hahn, Jin-Woo;Choi, Kang-Ryong
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.182-186
    • /
    • 2010
  • Effect of cobalt substitution on the sintering behavior and magnetic properties of a NiZnCu ferrite was studied. $Ni_{0.36-x}Co_xZn_{0.44}Cu_{0.22}Fe_{1.98}O_4(0{\leq}x{\leq}0.04)$ ferrite was fabricated by a solid stat reaction method. It was proposed and experimentally verified that $Co^{2+}$ substituted NiZnCu ferrite was effective on improving the quality factor and magnetic properties of NiZnCu ferrites for multilayer chip inductors. The ferrite was sintered without sintering aids, at $880{\sim}920^{\circ}C$, for 2 h and the initial permeability, quality factor, density, shrinkage, saturation magnetization, and coercivity were also measured. The quality factor (Q) was increased linearly up to x = 0.01 and decreased rapidly over x = 0.01. As the cobalt content increased, the initial permeability and density of the ferrites decreases. The initial permeability of toroidal sample for $Ni_{0.35}Co_{0.01}Zn_{0.44}Cu_{0.22}Fe_{1.98}O_4$ ferrites sintered at $900^{\circ}C$ was 130 at 1 MHz and quality factor was 230.

The Utilization of the steel converter dust (철강전노 dust의 활용에 관한 연구)

  • 김미성;김민석;김성원;오재현
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 1993
  • In this study, magnetite($Fe_3$$O_4$) from the converter dust of the Kwangyang steel making factory has been recove-red by means of the magnetic separation and the sedimentation column. The magnetite recovered from the dust is used for the preparation of Sr-ferrite instead of hematite. The results obtained in this study as follows : 1. The converter EP dust of the Kwangyang steel making factory are composed of $\alpha$-Fe, ($Fe_3$$O_4$) wustite etc. Magnetite in the converter EP dust is recovered by using sedimentation column and plastic bonding magnet. 2. It was confirmed that Sr-ferrite synthesis could be possible without oxidizing roasting of the magnetite. The steps of Sr-ferrite formation are proposed as follows : I$SrCO_3$ $+Fe_3$O$_4$+1/2(1-X)$O_2$longrightarrow$\alpha$ $-Fe _2$$O_3$ $+SrFeO _3$\ulcorner+$CO_2$II. $5.5\alpha$ $-Fe_2$$O_3$ $+SrFeO_3$\ulcornerlongrightarrowSrFe\ulcornerO\ulcorner+1/2(1/2-X)$O_2$3. By using magnetite from the dust insted of hematite, the hard Sr-ferrite magnet of (B.H)\ulcorner=2.64MGOe in the magnetic characteristics was succesfully prepared.

  • PDF

Effects of Ga Substitution on Crystallographic and Magnetic Properties of Co Ferrites

  • Chae, Kwang Pyo;Choi, Won-Ok;Kang, Byung-Sub;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.26-30
    • /
    • 2015
  • The crystallographic and magnetic properties of gallium-substituted cobalt ferrite ($CoGa_xFe_{2-x}O_4$) were investigated. The new material was synthesized using conventional ceramic methods, with gallium substituted for ferrite in the range of x = 0.0 to 1.0, in steps of 0.2. X-ray diffraction and M$\ddot{o}$ssbauer spectroscopy were used to confirm the presence of crystallized particles in the $CoGa_xFe_{2-x}O_4$ ferrite powders. All of the samples exhibited a single phase with a spinel structure, and the lattice parameters decreased as the gallium content increased. The particle size of the samples also decreased as gallium increased. For $x{\leq}0.4$, the M$\ddot{o}$ssbauer spectra of $CoGa_xFe_{2-x}O_4$ could be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites. However, for $x{\geq}0.6$, the M$\ddot{o}$ssbauer spectra could be fitted with two Zeeman sextets and one doublet. The variation in the M$\ddot{o}$ssbauer parameters and the absorption area ratio indicated a cation distribution of $(Co_{0.2-0.2x}Ga_xFe_{0.8-0.6x})[Co_{0.8+0.2x}Fe_{1.2-0.4x}]O_4$, and the magnetic behavior of the samples suggested that the increase in gallium content led to a decrease in the saturation magnetization and in the coercivity.

Preparation of Zeolite Coated with Metal-Ferrite and Adsorption Characteristics of Cu(II) (금속 페라이트가 코팅된 제올라이트의 제조와 Cu(II)의 흡착 특성)

  • Baek, Sae-Yane;Nguyen, Van-Hiep;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • In this study, a magnetic adsorbent was synthesized by growing ferrite nanoparticles substituted with metals (Me = Co, Mn, Ni) on zeolite 4A for the efficient separation of waste adsorbents present in the solution after the adsorption of Cu(II). The metal ferrite grown on the surface of zeolite was prepared by solvothermal synthesis. Characteristics of the magnetic adsorbent were analyzed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and physical property measurement system (PPMS). The saturation magnetization of the A type zeolite coated with Co-ferrite (CFZC) was the highest at 5 emu/g and the Cu(II) adsorption performance was also excellent. The adsorption results of Cu(II) on CFZC were well fitted by the Langmuir model at 298 K. Also, the adsorption of Cu(II) on CFZC follows a pseudo-second order kinetic. The Gibbs free energy values (${\Delta}G^0$) ranging from -4.63 to -5.21 kJ/mol indicates that the Cu(II) adsorption is spontaneous in the temeprature range between 298 and 313 K.

THE COMPLEX PERMEABILITY AND MATCHING FREQUENCY OF FERRITE MICROWAVE ABSORBER

  • Shin, Jae-Young;Oh, Jae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.800-804
    • /
    • 1995
  • The complex permeability dispersions and the microwave absorbing phenomena are investigated in ferrite microwave absorber. The complex permeability of NiZn ferrite, NiZnCo ferrite, and Y-type hexagonal ferrite were measured in 200MHz-14GHz range. Two types of resonances, the domain wall and the spin rotational resonance, were observed. With a ferrite particle with a diameter of about $1\;\mu\textrm{m}$, only spin rotational resonance were observed. The theoretical matching frequency is determined by plotting the measured complex permeability locus on the impedance matching solution map. One or two impedance matching phenomena are observed in the ferrite absorbers according to their complex permeability loci on the impedance matching solution map. The first matching frequency, found in the ferrite-rubber composites, which was higher than that of spin rotational resonance, increased with spin rotational resonance frequency.

  • PDF

The Design of a Near-Field Antenna with a Ferrite Sheet for UHF EPC Applications

  • Hwang, Yi Seul;Lee, Kyung Ho;Jeon, Yong Seung;Sung, Won Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.317-319
    • /
    • 2014
  • In this letter, a small-loop antenna for a mobile UHF RFID device is proposed. To achieve size reduction, a ferrite sheet optimized for a 900 MHz band is applied. The overall dimensions of the antenna are $46mm{\times}35mm{\times}0.24mm$, and it has a bandwidth of 45 MHz with a return loss of less than -6 dB. The proposed antenna satisfies near and far field UHF EPC global frequency band communications (902-928 MHz).

A Study on Physical Properties Of Co3O4-added Ni- Zn Ferrite at High Frequency (Co3O4첨가에 따른 고주파용 Ni-Zn계 ferrite의 물리적 특성 연구)

  • Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.791-795
    • /
    • 2002
  • We studied the physical properties of $Co_3$$O_4$-added Ni-Zn ferrite which were sintered at 1050~110$0^{\circ}C$ for 2 hours. X-ray diffraction showed a spinel structure, and optical microscopy showed grain sizes of 5 to 10 $\mu\textrm{m}$. As the sintering temperature was increased from $1050^{\circ}C$ to $1070^{\circ}C$, the initial permeability and magnetic induction increased, and both of the loss factor and the coercive force decreased. The Curie temperatures were about $^234~245{\circ}C$ with added $Co_3$$O_4$. The initial permeability was 350 to 420 and maximum magnetic induction density and coercive force 4870G to 4980G and 0.15 Oe to 0.21 Oe, respectively which were similar to those of Ni-Zn ferrite synthesized in the conventional process. The frequency of specimen was in the range of 1MHz to 300MHz. In the plot of initial permeability vs. frequencies, a $180^{\circ}C$ rotation of the magnetic domain could be perceived in a broad band of microwave before and after the resonance frequency.

Sintering and Microwave Properties of Ba Hexagonal Ferrite (Ba 육방정 페라이트의 소결 특성 및 마이크로파 특성)

  • Kim, Jae-Sik;Ryu, Ki-Won;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1293_1294
    • /
    • 2009
  • The sintering and high frequency electro-magnetic properties of Ba-hexagonal ferrite were investigated. All samples of the Ba-hexagonal ferrite were prepared by the conventional mixed oxide method and sintered at $1150^{\circ}C$~$1400^{\circ}C$. From the X-ray diffraction patterns of sintered Ba-hexagonal ferrite, the $Ba_3Co_2Fe_{24}O_{41}$ phase was represented as main phase in the almost sintering conditions. The bulk densities with sintering temperature and decreased at $1400^{\circ}C$. The permittivity ($\varepsilon$') and loss tangent of permittivity ($\varepsilon$"/$\varepsilon$') of $Ba_3Co_2Fe_{24}O_{41}$ ceramics increased and decreased with sintering temperature, respectively. The permeability of $Ba_3Co_2Fe_{24}O_{41}$ ceramics decreased with sinteirng temperature. The loss tangent of permeability was not changed compared each other with sintering temperature. The bulk density of $Ba_3Co_2Fe_{24}O_{41}$ ceramics sintered at $1300^{\circ}C$ was 4.79 g/$cm^3$. The permittivity, loss tangent of permittivity and permeability, loss tangent of permeability were 19.896, 0.1718 and 14.218, 0.2046 at 210 MHz, respectively.

  • PDF

Effect of Aging Coprecipitate on the Synthesis Process of Ba-Ferrite (공심물의 숙성이 Ba-Ferrite의 합성과정에 미치는 영향)

  • 김태옥;김은동
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.340-346
    • /
    • 1983
  • The effect of aging coprecipitate obtained by the reaction of mixed solution 1.1 mol FeCl-0.1 mol $BaCl_2$ and 4.0 mol. NaOH-1.0 mol $K _2 CO_3$ on the synthesis process of Baferrite $(BaFe_{12}O_{19})$ was investigated by means of DTA, TGA, XRD and electron microscope. The no-aged coprecipitate seems to be the aggregate of amorphosus $Fe_3$ .$nH_2O$ and (1-X) $BaCO_3$.$xBa(OH)_2$, but the 30 days-aged to be composed of crystalline $Fe_2O_3H_2O$ and $BaCO_3$. The decomposition temperature of $BaCO_3$ in the coprecipitate increases from 400-$700^{\circ}C$ to 700-90$0^{\circ}C$ with increment of aging-time. In the no-aged coprecipitate Ba-ferrite is synthesized through the surface reaction of amorphous Fe_2O_3$ and skeleton crystal BaO at 800-90$0^{\circ}C$ with more compact crystalization. During calcination of the 30 days-aged coprecibitate the intermediate phase BaFe_2O_4$ is formed at 600-$700^{\circ}C$ and completely transformed to Ba-ferrite at 800-90$0^{\circ}C$.

  • PDF