• Title/Summary/Keyword: Clustering for High Dimensional Data

Search Result 63, Processing Time 0.026 seconds

Enhanced Locality Sensitive Clustering in High Dimensional Space

  • Chen, Gang;Gao, Hao-Lin;Li, Bi-Cheng;Hu, Guo-En
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.125-129
    • /
    • 2014
  • A dataset can be clustered by merging the bucket indices that come from the random projection of locality sensitive hashing functions. It should be noted that for this to work the merging interval must be calculated first. To improve the feasibility of large scale data clustering in high dimensional space we propose an enhanced Locality Sensitive Hashing Clustering Method. Firstly, multiple hashing functions are generated. Secondly, data points are projected to bucket indices. Thirdly, bucket indices are clustered to get class labels. Experimental results showed that on synthetic datasets this method achieves high accuracy at much improved cluster speeds. These attributes make it well suited to clustering data in high dimensional space.

A Binary Prediction Method for Outlier Detection using One-class SVM and Spectral Clustering in High Dimensional Data (고차원 데이터에서 One-class SVM과 Spectral Clustering을 이용한 이진 예측 이상치 탐지 방법)

  • Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.886-893
    • /
    • 2022
  • Outlier detection refers to the task of detecting data that deviate significantly from the normal data distribution. Most outlier detection methods compute an outlier score which indicates the degree to which a data sample deviates from normal. However, setting a threshold for an outlier score to determine if a data sample is outlier or normal is not trivial. In this paper, we propose a binary prediction method for outlier detection based on spectral clustering and one-class SVM ensemble. Given training data consisting of normal data samples, a clustering method is performed to find clusters in the training data, and the ensemble of one-class SVM models trained on each cluster finds the boundaries of the normal data. We show how to obtain a threshold for transforming outlier scores computed from the ensemble of one-class SVM models into binary predictive values. Experimental results with high dimensional text data show that the proposed method can be effectively applied to high dimensional data, especially when the normal training data consists of different shapes and densities of clusters.

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

An Incremental Similarity Computation Method in Agglomerative Hierarchical Clustering

  • Jung, Sung-young;Kim, Taek-soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.579-583
    • /
    • 2001
  • In the area of data clustering in high dimensional space, one of the difficulties is the time-consuming process for computing vector similarities. It becomes worse in the case of the agglomerative algorithm with the group-average link and mean centroid method, because the cluster similarity must be recomputed whenever the cluster center moves after the merging step. As a solution of this problem, we present an incremental method of similarity computation, which substitutes the scalar calculation for the time-consuming calculation of vector similarity with several measures such as the squared distance, inner product, cosine, and minimum variance. Experimental results show that it makes clustering speed significantly fast for very high dimensional data.

  • PDF

SVM based Clustering Technique for Processing High Dimensional Data (고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법)

  • Kim, Man-Sun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.816-820
    • /
    • 2004
  • Clustering is a process of dividing similar data objects in data set into clusters and acquiring meaningful information in the data. The main issues related to clustering are the effective clustering of high dimensional data and optimization. This study proposed a method of measuring similarity based on SVM and a new method of calculating the number of clusters in an efficient way. The high dimensional data are mapped to Feature Space ones using kernel functions and then similarity between neighboring clusters is measured. As for created clusters, the desired number of clusters can be got using the value of similarity measured and the value of Δd. In order to verify the proposed methods, the author used data of six UCI Machine Learning Repositories and obtained the presented number of clusters as well as improved cohesiveness compared to the results of previous researches.

Partial Dimensional Clustering based on Projection Filtering in High Dimensional Data Space (대용량의 고차원 데이터 공간에서 프로젝션 필터링 기반의 부분차원 클러스터링 기법)

  • 이혜명;정종진
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.4
    • /
    • pp.69-88
    • /
    • 2003
  • In high dimensional data, most of clustering algorithms tend to degrade the performance rapidly because of nature of sparsity and amount of noise. Recently, partial dimensional clustering algorithms have been studied, which have good performance in clustering. These algorithms select the dimensional data closely related to clustering but discard the dimensional data which are not directly related to clustering in entire dimensional data. However, the traditional algorithms have some problems. At first, the algorithms employ grid based techniques but the large amount of grids make worse the performance of algorithm in terms of computational time and memory space. Secondly, the algorithms explore dimensions related to clustering using k-medoid but it is very difficult to determine the best quality of k-medoids in large amount of high dimensional data. In this paper, we propose an efficient partial dimensional clustering algorithm which is called CLIP. CLIP explores dense regions for cluster on a certain dimension. Then, the algorithm probes dense regions on a next dimension. dependent on the dense regions of the explored dimension using incremental projection. CLIP repeats these probing work in all dimensions. Clustering by Incremental projection can prune the search space largely and reduce the computational time considerably. We evaluate the performance(efficiency, effectiveness and accuracy, etc.) of the proposed algorithm compared with other algorithms using common synthetic data.

  • PDF

A Cell-based Clustering Method for Large High-dimensional Data in Data Mining (데이타마이닝에서 고차원 대용량 데이타를 위한 셀-기반 클러스터 링 방법)

  • Jin, Du-Seok;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.558-567
    • /
    • 2001
  • Recently, data mining applications require a large amount of high-dimensional data Most algorithms for data mining applications however, do not work efficiently of high-dimensional large data because of the so-called curse of dimensionality[1] and the limitation of available memory. To overcome these problems, this paper proposes a new cell-based clustering which is more efficient than the existing algorithms for high-dimensional large data, Our clustering method provides a cell construction algorithm for dealing with high-dimensional large data and a index structure based of filtering .We do performance comparison of our cell-based clustering method with the CLIQUE method in terms of clustering time, precision, and retrieval time. Finally, the results from our experiment show that our cell-based clustering method outperform the CLIQUE method.

  • PDF

A Comparison and Analysis on High-Dimensional Clustering Techniques for Data Mining (데이터 마이닝을 위한 고차원 클러스터링 기법에 관한 비교 분석 연구)

  • 김홍일;이혜명
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.887-900
    • /
    • 2003
  • Many applications require the clustering of large amounts of high dimensional data. Most automated clustering techniques have been developed but they do not work effectively and/or efficiently on high dimensional (numerical) data, which is due to the so-called “curse of dimensionality”. Moreover, the high dimensional data often contain a significant amount of noise, which causes additional ineffectiveness of algorithms. Therefore, it is necessary to look over the structure and various characteristics of high dimensional data and to develop algorithm that support clustering adapted to applications of the high dimensional database. In this paper, we investigate and classify the existing high dimensional clustering methods by analyzing the strength and weakness of each method for specific applications and comparing them. Especially, in terms of efficiency and effectiveness, we compare the traditional algorithms with CLIP which are developed by us. This study will contribute to develop more advanced algorithms than the current algorithms.

  • PDF

A Clustering Approach for Feature Selection in Microarray Data Classification Using Random Forest

  • Aydadenta, Husna;Adiwijaya, Adiwijaya
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 2018
  • Microarray data plays an essential role in diagnosing and detecting cancer. Microarray analysis allows the examination of levels of gene expression in specific cell samples, where thousands of genes can be analyzed simultaneously. However, microarray data have very little sample data and high data dimensionality. Therefore, to classify microarray data, a dimensional reduction process is required. Dimensional reduction can eliminate redundancy of data; thus, features used in classification are features that only have a high correlation with their class. There are two types of dimensional reduction, namely feature selection and feature extraction. In this paper, we used k-means algorithm as the clustering approach for feature selection. The proposed approach can be used to categorize features that have the same characteristics in one cluster, so that redundancy in microarray data is removed. The result of clustering is ranked using the Relief algorithm such that the best scoring element for each cluster is obtained. All best elements of each cluster are selected and used as features in the classification process. Next, the Random Forest algorithm is used. Based on the simulation, the accuracy of the proposed approach for each dataset, namely Colon, Lung Cancer, and Prostate Tumor, achieved 85.87%, 98.9%, and 89% accuracy, respectively. The accuracy of the proposed approach is therefore higher than the approach using Random Forest without clustering.

An Effective Algorithm for Subdimensional Clustering of High Dimensional Data (고차원 데이터를 부분차원 클러스터링하는 효과적인 알고리즘)

  • Park, Jong-Soo;Kim, Do-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.417-426
    • /
    • 2003
  • The problem of finding clusters in high dimensional data is well known in the field of data mining for its importance, because cluster analysis has been widely used in numerous applications, including pattern recognition, data analysis, and market analysis. Recently, a new framework, projected clustering, to solve the problem was suggested, which first select subdimensions of each candidate cluster and then each input point is assigned to the nearest cluster according to a distance function based on the chosen subdimensions of the clusters. We propose a new algorithm for subdimensional clustering of high dimensional data, each of the three major steps of which partitions the input points into several candidate clutters with proper numbers of points, filters the clusters that can not be useful in the next steps, and then merges the remaining clusters into the predefined number of clusters using a closeness function, respectively. The result of extensive experiments shows that the proposed algorithm exhibits better performance than the other existent clustering algorithms.