References
- C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu and J. S. Park, 'Fast Algorithms for Projected Clustering,' In Proceedings of the ACM SIGMOD International Conference on Management of Data, PP.61-72, 1999 https://doi.org/10.1145/304182.304188
- C. C. Aggarwal and P. S. Yu, 'Finding generalized projected clusters in high dimensional spaces,' In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.70-81, 2000 https://doi.org/10.1145/342009.335383
- C. C. Aggarwal and P. S. Yu, 'Finding generalized projected clusters in high dimensional spaces,' IEEE TKDE, Vol.14, No.2, pp.210-225, 2002
- R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, 'Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications,' In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.94-105, 1998 https://doi.org/10.1145/276304.276314
- M. Ankerst, M. M. Breunig, H.-P. Kriegel and J. Sander, 'OPTICS : Ordering Points to Identify the Clustering Structure,' In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.49-60, 1999 https://doi.org/10.1145/304182.304187
- M. Ester, H. P. Kriegel, J. Sander and X. Xu, 'A density based algorithm for discovering clusters in large databases,' In Proceedings of 1996 International Conference on Knowledge Discovery and Data Mining(KDD'96), pp.226-231, 1996
- S. Guha, R. Rastogi and K. Shim, 'CURE: An Efficient Clustering Algorithm for Large Databases,' In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.73-84, 1998 https://doi.org/10.1145/276304.276312
- J. Han and M. Kamber, Data Mining : Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco, CA, 2001
- A. Hinneburg and D. Keim, 'Optimal Grid-Clustering : Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering,' In Proceedings of the 25th VLDB Conference, pp.506-517, 1999
- A. K. Jain, M. N. Murty and P. J. Flynn, 'Data Clustering : A Review,' ACM Computing Surveys, Vol.31, No.3, pp.264-323, 1999 https://doi.org/10.1145/331499.331504
- G. Karypis, E. H. Han and V. Kumar, 'CHAMELEON : A Hierarchical Clustering Algorithm Using Dynamic Modeling,' COMPUTER, 32, pp.68-75, 1999 https://doi.org/10.1109/2.781637
- R. Kohavi and D. Sommerfield, 'Feature Subset Selection Using the Wrapper Method : Overfitting and Dynamic Search Space Topology,' In Proceedings of the First International Conference on Knowledge Discovery and Data Mining, 1995
- H. Liu and H. Motoda, Feature Extraction, Construction and Selection : A Data Mining Perspective, Kluwer Academic Publishers, Boston, 1998
- R. Ng and J. Han, 'Efficient and Effective Clustering Methods for Spatial Data Mining,' In Proceedings of the 20th VLDB Conference, pp.144-155, 1994
- R. Ng and J. Han, 'Efficient and Effective Clustering Methods for Spatial Data Mining,' IEEE TKDE Vol.14, No.5, pp.1003-1016, 2002
- C. M. Procopiuc, M. Jones, P. K. Agarwal and T. M. Murali, 'A Monte Carlo Algorithm for Fast Projective Clustering,' In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.418-427, 2002 https://doi.org/10.1145/564691.564739
- T. Zhang, R. Ramakrishnan and M. Linvy, 'BIRCH : An Efficient Data Clustering Method for Large Databases,' In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.103-114, 1996 https://doi.org/10.1145/233269.233324